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Abstract. Recommender Systems (RSs) may inadvertently perpetuate
biases based on protected attributes like gender, religion, or ethnicity.
Left unaddressed, these biases can lead to unfair system behavior and
privacy concerns. Interpretable RS models provide a promising avenue
for understanding and mitigating such biases. In this work, we pro-
pose a novel approach to debias interpretable RS models by introducing
user-specific scaling weights to the interpretable user representations of
prototype-based RSs. This reduces the influence of the protected at-
tributes on the RS’s prediction while preserving recommendation util-
ity. By decoupling the scaling weights from the original representations,
users can control the degree of invariance of recommendations to their
protected characteristics. Moreover, by defining distinct sets of weights
for each attribute, the user can further specify which attributes the rec-
ommendations should be agnostic to. We apply our method to Pro-
toMF, a state-of-the-art prototype-based RS model that models users
by their similarities to prototypes. We employ two debiasing strategies
to learn the scaling weights and conduct experiments on ML-1M and
LFM2B-DB datasets aiming at making the user representations agnos-
tic to age and gender. The results show that our approach effectively
reduces the influence of the protected attributes on the representations
on both datasets, showcasing flexibility in bias mitigation, while only
marginally affecting recommendation quality. Finally, we assess the ef-
fects of the debiasing weights and provide qualitative evidence, partic-
ularly focusing on movie recommendations, of genre patterns identified
by ProtoMF that correlate with specific genders.
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1 Introduction

Recommender Systems (RSs) typically operate as black boxes trained on large
collections of user-item interactions to generate recommendations. Through this
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training process, they capture underlying interaction patterns, revealing which
users prefer which content, to better model the users’ interests. Alas, the ob-
served user behavior might correlate with particular protected user attributes
such as gender, age, ethnicity, or religion, even when these are not explicit in
the data [12]. When exposed to such data, the RS can encode these correlations
in the user representations, potentially leading to biased predictions [17, 46, 33],
unfair system behavior across protected groups [11, 20], and the strengthening of
per-group “filter bubbles" [13, 29]. Furthermore, they can also raise privacy con-
cerns regarding the disclosure of sensitive information from the representations
[36, 4].

Interpretable RS models can be leveraged to understand how these biases
manifest in the data [19, 3] and how they are assimilated by the RS [38, 15].
In recent years, several RS models that offer interpretable user representa-
tions have emerged. Specifically, each dimension of these representations usu-
ally corresponds to an interpretable aspect, such as the user’s sentiment towards
items’ attributes [45], user or item features [16, 37], or similarity to prototypi-
cal users/items [1, 34]. These transparent models can assist in defining potential
corrective measures. For instance, if a particular dimension strongly correlates
with a user’s protected attribute, we can choose to weaken it and use the up-
dated representations to generate debiased recommendations. Alternatively, we
may also amplify another dimension associated with a different value of the pro-
tected attribute, thereby increasing the ambiguity surrounding the true user’s
attribute. However, determining which dimensions are indicative of the attribute
in the first place can still pose challenges.

One solution, explored in recent literature, is to adapt the user represen-
tations, predominantly through in-processing techniques [9, 11]. These methods
involve (re-)training a RS model to provide relevant recommendations while also
optimizing a debiasing objective that attempts to make the predictions invariant
to the user’s protected attributes, albeit with a trade-off in performance [29, 4,
46, 17]. However, depending on the user’s preferences, the context, or bias-utility
trade-off considerations, end-users might in practice still prefer to receive some
recommendations from the original (potentially biased) model. Especially when
different users have different attitudes towards their biased representations (e. g.,
users conforming to stereotypical norms may prefer biased predictions), or when
the same user prioritizes having their recommendations unbiased with respect to
certain attributes but not others [29]. Accommodating all these scenarios with
current approaches can be burdensome, as it requires training a separate RS for
every protected attribute and according to each user’s request.

In contrast, we propose learning separate user-specific scaling weights that
can be applied to the interpretable user representations of a pre-trained RS
model. These modular weights automatically adjust the representations to re-
duce their biases associated with a protected attribute, e. g., gender or age, while
still preserving relevant recommendations. This concept aligns with recent efforts
in the NLP community focused on modular bias mitigation, enabling end-users
to choose whether their results should be biased or unbiased on-demand [25, 32,
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26]. Our method allows to flexibly cover different users’ needs. By keeping the
weights separate from the original representations, users can decide during in-
ference whether their recommendations should be influenced by their protected
attributes, applying the scaling weights as needed. Additionally, by training dis-
tinct sets of weights for each attribute of interest, users can further specify with
respect to which of them the recommendations should be agnostic.

We apply our approach to the recently proposed ProtoMF model [34], a
prototype-based RS designed to capture specific item-consumption characteris-
tics of the data through the concept of user/item prototypes [27, 23]. We select
this model for its ability to provide relevant and explainable recommendations;
nevertheless, our method can be applied to any interpretable RS that provides
interpretable user representations. Within ProtoMF, each user is mapped to
a representation where each dimension indicates the similarity between the user
and a specific user prototype. The application of the scaling weights, hence, tunes
these similarities, thereby influencing the impact of the prototype’s pattern on
the resulting recommendations. Consequently, analyzing which dimensions are
attenuated (< 1) or amplified (> 1) by the debiasing strategy aids us in inter-
preting which consumption patterns might be correlated (and in which way) to
a specific protected attribute.

We evaluate our method on two popular datasets of movie ratings (ML-
1M [24]) and music listening records (LFM2B-DB [35]). For both datasets, we
learn user representations that are less affected by the user’s gender and age,
which aligns with the concepts of representational fairness [40] or demographic
parity [2]. Intuitively, if the representations are invariant to these attributes,
predictions based on these representations will also be invariant, resulting in
less biased recommendations [2]. For instance, the RS will avoid recommending
only Romance movies to female users. Our approach is agnostic to the debiasing
objective, allowing the scaling weights to be trained with any gradient descent-
based signal that ensures representation invariance to a specific user’s attribute.
In this study, we investigate two debiasing objectives: Maximum Mean Discrep-
ancy [22] and Adversarial Debiasing [43, 21]. To assess the effectiveness of our
approach to mitigate bias, we follow the standard evaluation framework for de-
biasing [14, 32, 26, 29] and report the performance of an external probe network
trained to predict the protected attribute from the user representations. Com-
pared to the original user representations, our results show that our proposed
method effectively impairs the probe’s ability to recover sensitive information,
resulting in a substantial reduction in bias while only marginally affecting rec-
ommendation performance. Finally, we investigate the effect of the debiasing
weights and showcase for ML-1M the genre patterns captured by ProtoMF
that are correlated with gender. Our code and settings are publicly available at
https://github.com/hcai-mms/modprotodebias.
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2 Related Work

Our research is influenced by recent works in NLP. Thus, we review pertinent
literature in this field before delving into related research on debiasing RSs.

Bias Mitigation in Natural Language Processing. Extensive research has ad-
dressed societal biases within Language Models (LMs), particularly focusing on
attribute erasure [33]. This involves reducing the influence of protected attributes
within LM’s embeddings to mitigate empirical biases [33, 40] or achieve repre-
sentational fairness [14]. Recent studies explore modular bias mitigation, en-
abling end-users to select between biased or bias-mitigated models for individ-
ual queries. In particular, Hauzenberger et al. [25] learn a set of sparse additive
weights that mitigate societal bias when added to the original model. Kumar
et al. [26] leverage adapters [39] to isolate the sensitive information in separate
blocks of the LM. Masoudian et al. [32] introduce controllable gates to scale
LM’s representations to switch between biased/unbiased predictions. Inspired
by these studies, our work introduces separate per-user scaling weights to adjust
user representations for unbiased recommendations.

Bias Mitigation in Recommender Systems. Being multi-sided platforms, RSs’
outcomes may be prone to biases associated with the users [8, 42] and items [5,
44]. While there are several strategies to mitigate these biases and increase the
RSs’ fairness, recent literature especially focuses on in-processing techniques [11,
12]. Zhu et al. [47] tackle the issue of item under-recommendation from im-
balanced train data and propose a regularization objective based on fairness.
Similarly from the user side, Li et al. [28] propose a novel RS model to learn
user/item representations that avoid unfairly penalizing non-mainstream users.
Several studies focus on removing spurious correlations between users’ protected
attributes and recommendations by leveraging adversarial learning, albeit at
some performance trade-off. For instance, Bose and Hamilton [6] and Wu et
al. [42], learn user/item representations in graph-based RSs that are invariant to
the user’s protected attribute. Ganhör et al. [17] adapt Mult-VAE [30] to gener-
ate recommendations agnostic to users’ gender. Li et al. [29] simultaneously train
a set of filters, one for each attribute, as well as the underlying RS, to satisfy dif-
ferent users’ fairness demands. Some authors also leveraged interpretable models
to assess fairness issues in RSs. Ge et al. [19] employ counterfactual learning to
learn the minimal change to the input features of a feature-aware RS to address
item exposure unfairness in the recommendations. Fu et al. [15] present a fairness
re-ranking approach to decrease performance disparity between active/inactive
users in explainable recommendations over knowledge graphs. Our work comple-
ments the above studies by addressing the influence of users’ protected attributes
on the recommendations of a pre-trained RS, leveraging modular scaling weights
on the interpretable user representations concerning user prototypes.
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3 Methodology

Let U = {ui}Ni=1 and T = {tj}Mj=1 denote the set of N users and M items, re-
spectively. We assume that we only have access to the implicit interaction data
I = {(ui, tj)}, where (ui, tj) indicates that user ui has interacted with item tj .
Additionally, each user ui is associated with one or more protected attributes
g ∈ G. We omit the user and item indexes for brevity. Let rec(·, ·) be an inter-
pretable RS model that, beyond scoring each user-item pair rec(u, t) ∈ R, also
maps each user u to an intermediate interpretable representation u ∈ Rd. This
representation may align with various aspects, such as user’s sentiment towards
items’ attributes [45], user or item features [16, 37], or similarity to prototypi-
cal users and items derived from the dataset [1, 34]. In this work, we focus on
the latter and particularly the recently proposed ProtoMF model [34] as it
showcased high accuracy in the recommendation task. Nevertheless, our method
can be applied to any RS offering interpretable user representations. Within
ProtoMF, each dimension {i}di=1 in u indicates the similarity of user u to a
specific user prototype pi, representing item-consumption characteristics of the
data, with similarity values in the range (0, 2). As shown next, the interpretable
representation u may encode the protected user attribute g, despite the infor-
mation not being explicitly provided to the RS. As a consequence, the RS can
pick up this information and bias its predictions, as also shown in [17, 46, 29].

To address this issue, we define a vector of scaling weights ωu ∈ Rd for
each user, which can be plugged in at will. Starting from the u representation
obtained from the pre-trained RS model, we derive a new user representation ũ
as follows:

ũ = u⊙ ωu

where ⊙ is the Hadamard product. We leave the original user representation
u (as well the other model parameters) unchanged while we only optimize ω
so that the new representation ũ remains relevant for the recommendation task
while becoming invariant to the protected attribute g. The optimization involves
minimizing a recommendation loss Lrec as well as a debiasing objective Ldebias:

ω∗ = argmin
ω

Lrec(I,ω) + λLdebias(I,ω, g)

where the hyperparameter λ adjusts the strength of the debiasing loss. As rec-
ommendation loss Lrec, we adopt the same loss function as the base RS model. In
the case of ProtoMF [34], this corresponds to the cross-entropy loss reported
below for reference:

Lrec = −
∑

(u,t)∈I

ln p(t|u), p(t|u) = erec(u,t)∑
j e

rec(u,tj)
(1)

The debiasing objective Ldebias operates on the representations ũ and the cor-
responding protected attribute label g to realize invariance. Our approach is
agnostic to the debiasing objective, allowing the scaling weights to be trained
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with any gradient descent-based signal that ensures representation invariance.
In our work, we employ two prominent debiasing strategies: Maximum Mean
Discrepancy (MMD) [22, 25] and Adversarial Debiasing (Adv.) [43, 14].

Maximum Mean Discrepancy (MMD) [22] aims to minimize the distribution
shift between the representations of a specific protected attribute g. Effectively,
given the set of users U split into two subsets UA

g and UB
g according to the values

of a binary3 protected attribute g, MMD minimizes the mean distance between
the user representations ũ of the two subgroups:

Ldebias =

∥∥∥∥∥∥ 1

|UA
g |

∑
i∈UA

g

ϕ(ũi)−
1

|UB
g |

∑
j∈UB

g

ϕ(ũj)

∥∥∥∥∥∥
2

2

(2)

where ϕ is a feature map kernel defined as a sum of multiple Gaussian kernels.

Adversarial Debiasing (Adv.) [21, 43] is a common approach in learning input
representations that are informative for the task while remaining invariant to
specific traits of the data [14, 17]. In our context, each user is passed through an
adversarial head h(·) that aims to infer the protected attribute g from ũ by lever-
aging the cross-entropy loss Ldebias(ũ, g) = LCE(ũ, g). During training, we aim
to learn scaling weights ω that maintain relevant user recommendations while
hindering the adversary’s predictive ability. This objective is commonly solved as
a minimization task by inserting a gradient reversal layer grl(·) between the ad-
versary and the rest of the model [18, 43]. Essentially, during back-propagation,
the grl(·) negates and potentially scales the gradients flowing from the adversary
to the weights, pushing the ω in the opposite direction desired by the adversary.
This allows us to formulate the debiasing objective as:

Ldebias = LCE(grl(ũ), g) (3)

Finally, given the learned scaling weights ω, we derive the adjusted user rep-
resentations ũ, which are used by the RS model to provide item recommenda-
tions that are both relevant and agnostic to the user’s protected attribute. Our
proposed approach offers a flexible and informative method for debiasing. By
keeping the weights separate from the original representations, users can decide
during inference whether their recommendations should be influenced by their
protected attributes, applying the scaling weights as needed. Using distinct sets
of weights for each attribute of interest, users can further specify with respect to
which of them the recommendations should be agnostic. Moreover, by analyzing
which interpretable dimensions are attenuated (ω < 1) or amplified (ω > 1), we
can assess which consumption patterns might be correlated (and in which way)
to a specific protected attribute.
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ML-1M Users Interactions Items LFM2B-DB Users Interactions Items

All 6,034 574,376

3,125

All 16,258 2,339,540

99,824

Gender M 4,326 429,039 Gender M 12,734 1,981,006
F 1,708 145,337 F 3,524 358,534

Age

< 18 222 15,583

Age

≤ 18 1,811 232,94218-24 1,100 100,655
25-34 2,095 222,242 19-32 12,613 1,797,29135-44 1,192 116,507
45-49 550 49,400 33-39 1,126 184,17650-55 496 44,979
> 56 379 25,010 > 40 708 125,131

Table 1: Statistics of the datasets used in our experiments.

4 Experiment Setup

Datasets. We use two standardized datasets containing user-item interactions
along with partial user’s demographic: (1) MovieLens-1M4 (ML-1M) [24]
contains the ratings of users on movies as well as user’s gender, age group,
and occupation. As common [34, 30], we treat high movie ratings (> 3.5 on
a 1-5 scale) as positive interactions while discarding the rest, and perform 5-
core filtering. (2) LFM2B-DemoBias (LFM2B-DB) [35] is a sub-set of
the LFM2B5 dataset, which provides a collection of music listening records of
users for whom partial demographic information (i. e., gender, age, country) is
available. We follow the same data processing methodology as in Melchiorre et
al. [35]. Specifically, we keep user-item interactions with a minimum play count
of two and binarize the interactions. Additionally, to accommodate computa-
tional constraints, we randomly sample 100, 000 tracks from the large catalog
and apply 5-core filtering. Furthermore, we split users into age groups based on
their deviation from the mean age (µ = 24.87, σ = 7.30) by multiples of σ.

Table 1 offers a detailed summary of the dataset statistics, including the
breakdown by user attribute. With both datasets, we focus on the gender and
age of the user as protected attributes in our experiments.6

Data Splits. To train both the underlying RS model and the scaling weights,
we employ the leave-k-out strategy [10] for every user. Specifically, for each
user, we sort their item interactions according to the timestamps (keeping the
earliest interaction if multiple ones with the same item exist). The last 10%
interactions of the users are used as test, while the penultimate 10% as validation
set. The remaining interactions constitute the training set. During training, for
3 We consider majority vs. all others subsets for non-binary attributes.
4 https://grouplens.org/datasets/movielens/1m/
5 http://www.cp.jku.at/datasets/LFM-2b/
6 Both datasets provide gender in binary form, neglecting nuanced gender definitions.
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each positive user-item interaction, we randomly sample 10 negative items not
interacted with by the user. We scale both the adversary’s and, later, the probe’s
loss, ensuring that data points from all user groups contribute equally. This
balancing not only aids debiasing [35] but also prevents both classifiers from
solely predicting the majority class [14].

ProtoMF Pre-Training. We follow a similar training procedure as the original
UI-ProtoMF paper does [34], referred here simply as ProtoMF. We train
the model for 50 and 100 epochs on ML-1M and LFM2B-DB, respectively,
with the AdamW optimizer [31]. We perform early-stopping if the accuracy on
the validation set does not improve for 5 consecutive epochs. After preliminary
experiments, we set the number of user prototypes based on the dataset (42
for ML-1M and 64 for LFM2B-DB) and fix the batch size to 256. We then
carry out a comprehensive search for optimal embedding sizes and loss-related
hyperparameters. Details on the range of hyperparameters explored, as well as
those selected for the final models, are provided in the appendix. Once we identify
the model that achieves the highest accuracy on the validation set, we freeze its
parameters and only update the scaling weights during debiasing.

Evaluation. To assess the effectiveness of our approach to bias mitigation, we
follow the standard evaluation framework [14]. Specifically, after freezing the
model’s parameters (including the ω), we train a probe network to predict the
protected attributes from the user representations. We measure the accuracy
(Acc) and balanced accuracy (BAcc) when predicting the users’ gender and age.
Particularly, we focus on the BAcc metric [7] as it is well-suited for imbalanced
datasets. BAcc reports the average recall per user group, where a value of 1

#Groups
represents a fully debiased representation which amounts to .50 for gender on
both datasets and 1

7 = .14 and 1
4 = .25 for age on ML-1M and LFM2B-DB, re-

spectively. To evaluate recommendation performance, we use Normalize Discount
Cumulative Gain (NDCG), specifically NDCG@10. We report performance and
bias mitigation results as average computed on the test set for three seeds.

Debiasing and Probing. For the MMD method, we use a batch size of 128 and
set the learning rates to 5e−5 for gender and 5e−4 for age on both datasets. In
the Section 5, we explore different values of λ. Regarding adversarial debiasing,
instead, we employ a two-layer neural network with 512 neurons as an adversary
network. We investigate the impact of using multiple adversarial networks, i. e.,
adversarial heads, by averaging their debiasing losses [14]. We use a batch size
of 512 for ML-1M and 1024 for LFM2B-DB, with a learning rate of 5e−5,
adjusting λ based on the dataset and attribute.7 Our probe is a two-layer neural
network with 128 neurons in the hidden layer. We set the learning rate and
weight decay based on the probe’s performance on each dataset and attribute.
After debiasing, we train a new probe using the debiased user representations
while keeping the scaling weights (and the base model) unchanged. Finally, we

7 λ = 1 on LFM2B-DB, λ = 5 and λ = 10 on ML-1M for gender and age respectively.
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initialize the ω by sampling from the normal distribution N (1, .012) and train
them, as well as the probe, for 25 epochs using the AdamW optimizer [31].

5 Results and Analysis

Dataset Attribute Debiasing Bias ↓ NDCG ↑BAcc Acc

ML-1M

Gender
None .789003 .788001 .06250000
MMD .542003 .497025 .06180000
Adv. .542008 .608047 .06200000

Age
None .465002 .424003 .06250000
MMD .232001 .207004 .05940002
Adv. .232026 .193011 .06180001

LFM2B-DB

Gender
None .723002 .718004 .07540000
MMD .536004 .397078 .07450001
Adv. .600011 .636065 .07550001

Age
None .581005 .504008 .07540000
MMD .299003 .238055 .06260001
Adv. .390011 .277018 .07550001

Table 2: Debiasing and performance results on both datasets and attributes. We
highlight the least biased and best-performing values among Adv. and MMD.
Subscripts indicate the standard deviation.

General Results. Table 2 reports the results of the debiasing methods and recom-
mendation utility across datasets and attributes. We highlight in bold the best
RS performance (highest NDCG) and best debiasing performance (lowest BAcc
of the probing network). Results are computed on the test set as the average of
3 random seeds, with subscripts indicating the standard deviation.

When no debiasing is applied (None rows in Table 2), we observe that the
users’ protected attributes can be predicted with relatively high accuracy by the
probe. The BAcc for gender reaches .79 and .72 on ML-1M and LFM2B-DB
datasets respectively, compared to a baseline value of .50 of a random predictor.
Similar observations can be made for age; on ML-1M the probe’s BAcc is .47
against the baseline of .14 and on LFM2B-DB is .58 vs. .25 in a bias-free
settings. These results indicate that the user representations u learned by the RS
do retain information about the user’s protected attributes and can potentially
bias the recommendations.

When applying the scaling weights, either learned by MMD or Adv., we
observe a substantial decrease in both Acc and BAcc of the probe. This reduc-
tion spans across both attributes and datasets, indicating the effectiveness of
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Dataset Attr. Metric λ
0 2 5 10 15 20

M
L
-1

M

G
en

de
r Bias ↓ BAcc .789.003 .633.010 .574.010 .548.002 .548.003 .542.003

Acc .788.001 .631.011 .557.027 .552.012 .514.030 .497.025

NDCG ↑ .0625.0000 .0624.0000 .0623.0000 .0621.0001 .0619.0001 .0618.0000
A

ge Bias ↓ BAcc .465002 .463.006 .398.004 .320.007 .258.005 .232.001

Acc .424003 .356.003 .305.004 .252.005 .215.006 .207.004

NDCG ↑ .06250000 .0626.0002 .0619.0002 .0609.0002 .0600.0001 .0594.0002

L
F
M

2B
-D

B

G
en

de
r Bias ↓ BAcc .723.002 .607.001 .567.008 .551.005 .538.003 .536.004

Acc .718.004 .588.003 .469.065 .428.074 .357.014 .397.078

NDCG ↑ .0754.0000 .0756.0000 .0755.0001 .0752.0000 .0749.0001 .0745.0001

A
ge Bias ↓ BAcc .581005 .639.013 .548.006 .406.008 .327.008 .299.003

Acc .504008 .517.021 .406.010 .232.007 .182.006 .238.055

NDCG ↑ .07540000 .0755.0002 .0752.0002 .0697.0003 .0638.0001 .0626.0001

Table 3: Debiasing and performance results on both datasets and attributes using
the MMD method across several λ values.

our proposed method in weakening the attribute information in the new user
representations. We observe that the efficacy and the impact of the ω depends
on the dataset under scrutiny. On the ML-1M datasets, MMD and Adv. reach
similar BAcc values for age and gender, both resulting in a moderate decrease in
NDCG. However, Adv. shows higher capability in preserving the recommenda-
tion performance compared to MMD. On the LFM2B-DB dataset, the scaling
weights learned by MMD display lower bias, although at a larger trade-off in
recommendation performance. The Adv. method, on the other hand, appears
to fully preserve the initial NDCG while leading to a smaller decrease in BAcc
compared to MMD. Considering these results, we derive that (1) the debiased
user representations, obtained by either MMD or Adv., exhibit significant de-
creases in the bias metrics, although the predictions are not yet fully random
(e. g., Gender BAcc > .50), and (2) there exists a trade-off between bias reduc-
tion and recommendation accuracy whose strength depends on the dataset. We
investigate the latter aspect below.

Bias vs. Performance Analysis. Considering the MMD method, we report in
Table 3 the bias metrics and recommendation accuracy across different values of
λ ranging from 0 (no debiasing is applied) to 20 for ML-1M and LFM2B-DB
on both attributes. We plot the changes of BAcc and NDCG over the λ’s for age
and gender on LFM2B-DB in Figure 1. We observe that high λ values lead to a
stronger debiasing of the user representations, i. e., lower BAcc, however at the
cost of a moderate reduction of NDCG. We also notice that, on both datasets,
making the representations agnostic to age leads to a harsher reduction of rec-
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Fig. 1: BAcc and NDCG on LFM2B-DB using MMD, over varying λ values. In
Fig. 1a, BAcc refers to gender, in Fig. 1b to age.

ommendation accuracy compared to debiasing for gender. Lastly, we observe for
λ = 2 on the age attribute in LFM2B-DB, associated with a milder debiasing,
the BAcc even increases, suggesting that without proper debiasing, more bias
information can be encoded in the user representations through the ω by the
recommendation loss.

Regarding the Adv. method, preliminary experiments with the Adv. method
showed that using a single adversary head while increasing λ led to unstable
debiasing behavior, causing the adversary to fail and more bias to be encoded
in the scaling weights. To address this, we followed previous research on ad-
versarial debiasing [14, 32, 26] and opted to use multiple adversary heads while
fixing λ based on the dataset and attribute (see Section 4). Table 4 displays
bias/recommendation performance across different numbers of adversarial heads.
Similarly to the MMD method, we observe lowest bias with a stronger debiasing
approach, namely 20 heads. By increasing the # of heads, we see a progressive
reduction in NDCG on ML-1M for both age and gender, while the recommen-
dation performance on LFM2B-DB remains relatively constant.

In summary, we find that (1) MMD progressively reduces both bias and rec-
ommendation performance on both datasets and attributes when increasing λ,
and (2) Adv. showcases a similar gradual change on ML-1M while recommen-
dation accuracy remains relatively stable on LFM2B-DB when increasing the
number of adversarial heads.

Weights Analysis. We now examine how the scaling weights affect the original
user representations. As our method reduces the influence of sensitive informa-
tion in ũ, we expect that the representations of users with different values of the
protected attribute become more similar. We verify this by computing the aver-
age user representation for each user group and ranking the prototypes, i. e., the
interpretable dimensions, from most to least similar. Given the ranking of two
user groups, we compute Spearman’s rank correlation [41] where values closer
to +1 indicate both groups rank the prototypes similarly while values approach-
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Dataset Attribute Metric # of Adv. Heads
0 3 5 10

ML1M

Gender Bias ↓ BAcc .789.003 .642.029 .573.014 .542.008

Acc .788.001 .653.029 .609.009 .608.047

NDCG ↑ .0625.0000 .0621.0001 .0621.0001 .0620.0000

Age Bias ↓ BAcc .465002 .310.022 .265.007 .232.026

Acc .424003 .267.024 .218.012 .193.011

NDCG ↑ .06250000 .0620.0002 .0618.0001 .0618.0001

LFM2B-DB

Gender Bias ↓ BAcc .723.002 .677.011 .608.040 .600.011

Acc .718.004 .705.016 .598.088 .636.065

NDCG ↑ .0754.0000 .0755.0001 .0755.0000 .0755.0001

Age Bias ↓ BAcc .581005 .505.020 .455.012 .390.011

Acc .504008 .414.016 .375.050 .277.018

NDCG ↑ .07540000 .0754.0000 .0754.0000 .0755.0001

Table 4: Debiasing and performance results on both datasets and attributes using
the Adv. method across different number of adversarial heads.

ing −1 imply an inverse ranking. Figure 2 shows the results for the two gender
groups on both datasets. Plots for age are provided in the appendix. Initially, we
observe different prototype rankings between males and females, especially on
the ML-1M dataset (ρ = −.40). However, as we increase the debiasing strength,
the representations of males/females progressively become more aligned, as seen
from the correlations plateauing between .70 and .80 across datasets and de-
biasing strategies. We derive that the scaling weights, while ensuring relevant
recommendations for users and mitigating the bias of the protected attribute,
lead to an alignment between the representations across user groups.

Taking a closer look at the scaling weights, we plot the average user-to-
prototype similarities u and average ω for Female (Fig. 3a) and Male (Fig. 3b)
user groups on the ML-1M datasets sorted by most to least similar prototype.
We notice a pattern wherein, on average, the scaling values of ω shrink (ω < 1)
the similarities to the prototypes most similar to the user group while they am-
plify (ω > 1) the similarities to the least similar prototypes. By examining the
interpretations of the most and least similar prototypes for each user group,
shown in Figure 4a, we infer that the debiased representations for female users
show reduced activation towards genre patterns of Romance, Drama, and Com-
edy and increased activation towards Action and Sci-Fi. Conversely, the debiased
representations for the male group display the opposite trend.

Finally, we look at a qualitative example showcasing the application of our
learned scaling weights. In Figure 4b, we report the relevant recommendations for
an arbitrary female user from ML-1M before and after debiasing. We highlight
items dropped from the recommendations in red text and newly recommended
items in blue. Additionally, we use green to highlight the cell containing the
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Fig. 2: Spearman’s correlation between avg. male/female prototype rankings on
both datasets and both debiasing methods.
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Fig. 3: Average user-to-prototypes similarities and average ω values for female
users (left) and male users (right), sorted by most to least similar prototypes.

ground truth items. Upon inspection, we observe that the debiased representa-
tion indeed affects the recommendations, particularly altering the items at the
bottom of the list. We also note a reduction in the number of Romance movies
and an increase in Sci-Fi movies before and after debiasing. This diversification
also results in better recommendations for the user.

6 Conclusion and Future Directions

This work addresses the pervasive issues of societal bias in RSs from the user
perspective. We propose a novel approach that leverages interpretable RS models
and introduces per-user scaling weights to mitigate biases in the user represen-
tations while preserving recommendation quality. By applying our method to
the prototype-based ProtoMF model [34], we demonstrate its effectiveness in
reducing bias associated with protected attributes such as gender and age. Our
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Assets

Prototype 5 (High Sim.) Prototype 22 (Low Sim.)

Affair to Remember, An
Romance

Aliens
Action,Sci-Fi,Thriller,War

Gone with the Wind
Drama,Romance,War

Terminator, The
Action,Sci-Fi,Thriller

Arsenic and Old Lace
Comedy,Mystery,Thriller

Star Trek: Wrath of Khan
Action,Adventure,Sci-Fi

Love in the Afternoon
Comedy,Romance

Night Flier
Horror

Swept from the Sea
Romance

Blade Runner
Film-Noir,Sci-Fi

Assets

Prototype 32 (High Sim.) Prototype 34 (Low Sim.)

Star Wars: Episode IV
Action,Adventure,Fantasy,Sci-Fi

Penny Serenade
Drama,Romance

Star Wars: Episode V
Action,Adv,Drama,Sci-Fi,War

Auntie Mame
Comedy,Romance

Star Wars: Episode VI
Action,Adv.,Romance,Sci-Fi,War

Charade
Comedy,Romance,Myst.Thriller

Back to the Future
Comedy,Sci-Fi

Love in the Afternoon
Comedy,Romance

Star Trek: Wrath of Khan
Action,Adventure,Sci-Fi

Crimes of the Hearth
Comedy,Drama

(a) Most and least similar prototypes for
female (Top) and male (Bottom) users on
ML-1M.

Assets

Before After
Wizard of Oz, The

Adv.,Child.,Drama,Musical
Wizard of Oz, The

Adv.,Child.,Drama,Musical
Big

Comedy,Fantasy
Big

Comedy,Fantasy
Breakfast Club, The

Comedy,Drama
Breakfast Club, The

Comedy,Drama
Vertigo

Mystery,Thriller
Vertigo

Mystery,Thriller
Raising Arizona

Comedy
Terminator 2

Action,Sci-Fi,Thriller
Ever After

 Drama,Romance
Raising Arizona

Comedy
Clueless

Comedy,Romance
Alien

Action,Horror,Sci-Fi,Thriller
Misery
Horror

Usual Suspects, The
 Crime,Thriller

Star Trek: First Contact
Action,Adv.,Sci-Fi

Blade Runner
Film-Noir,Sci-Fi

Lion King, The
Animation,Child., Musical

Twelves Monkeys
 Drama,Sci-Fi

(b) Top-10 recommendations for an arbi-
trary female user on ML-1M before and
after debiasing.

Fig. 4: Examples of qualitative results.

evaluation on ML-1M and LFM2B-DB showcases the flexibility and efficacy of
our approach in bias mitigation. Through qualitative analysis, we reveal corre-
lations between consumption patterns and protected attributes, enhancing our
understanding of bias in RSs. Moving forward, we envision exploring per-user
weights that debias the user representation with respect to a conjunction of dif-
ferent protected attributes [29] simultaneously while also analyzing its effect on
recommendation performance. Additionally, investigating end-users’ perceptions
of biases in recommendations appears as a promising avenue for future work.
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