

Alessandro B. Melchiorre alessandro.melchiorre@jku.at https://karapostk.github.io

Navid Rekab-saz navid.rekabsaz@jku.at

Christian Ganhör christian.ganhoer@jku.at

Markus Schedl markus.schedl@jku.at

Prototype-based Machine Learning Models

[1] Li, Oscar, et al. "Deep learning for case-based reasoning through prototypes: A neural network that explains its predictions." AAAI 2018.

[2] Chen, Chaofan, et al. "This looks like that: deep learning for interpretable image recognition." NeurIPS 2019.

[3] Rymarczyk, Dawid, et al. "Protopshare: Prototypical parts sharing for similarity discovery in interpretable image classification." SIGKDD 2021.

LEGEND **PROTOTREE - GLOBALLY INTERPRETABLE MODEL** Prototype Prototype present looks like) Prototype X not present Inot Heal Prediction Summer Tanager L Scarlet Tanager Vermillion Flycatcher Painted Bunting Example Example Training Training Images Images

[4] Nauta, Meike, et al. "Neural prototype trees for interpretable fine-grained image recognition." CVPR 2021.

"A Prototype is an object that is representative of a set of similar instances and is part of the observed points, or **it is an artifact summarizing a subset of them with similar characteristics**"

[5] Guidotti, Riccardo, et al. "A survey of methods for explaining black box models." CSUR 2018.

Data points

Prototypes

[1] Li, Oscar, et al. "Deep learning for case-based reasoning through prototypes: A neural network that explains its predictions." AAAI 2018.

[2] Chen, Chaofan, et al. "This looks like that: deep learning for interpretable image recognition." NeurIPS 2019.

Aim:

Explain recommendations of matrix factorization approaches using item and user prototypes.

Prototype-based Recommender Systems

Prototyped-based Matrix Factorization (ProtoMF)

Matrix Factorization

[6] Koren, Yehuda, et al.. "Matrix factorization techniques for recommender systems." Computer 2009. [7] Rendle, Steffen, et al. "BPR: Bayesian personalized ranking from implicit feedback." UAI 2009.

User Prototype Matrix Factorization (U-ProtoMF)

Item Prototype Matrix Factorization (I-ProtoMF)

User-Item Prototype Matrix Factorization (UI-ProtoMF)

Experiment Setup

Datasets:

- MovieLens-1M [8]
- LFM2B-1Month [9]
- Amazon Video Games [10]

Baselines:

- Matrix Factorization [6]
- Representative-based Matrix Factorization [11]
- Anchor-based Collaborative Filtering [12]
- *NDCG* and *Hit Ratio* at 5, 10, 50.
- Statistical tests assessing the improvements.
- Extensive hyperparameter optimization.

	ml-1m	lfm2b-1mon	AmazonVid
# Users	6,034	3,555	6,950
# Males/Females	4,326/1,708	2,965/590	-
	(72%/28%)	(83%/17%)	-
# Items	3,125	77,985	14,494
# Interactions	574,376	877,365	132,209

Table 1: Statistics of the datasets after filtering.

[8] Harper, F. Maxwell, and Joseph A. Konstan. "The Movielens Datasets: History and Context." TIIS 2015.

[9] Schedl, Markus, et al. "LFM-2b: A Dataset of Enriched Music Listening Events for Recommender Systems Research and Fairness Analysis." CHIIR 2022.

[10] McAuley, Julian, et al. "Image-based Recommendations on Styles and Substitutes." SIGIR 2015.

[11] Liu, Nathan N., et al. "Wisdom of the better few: cold start recommendation via representative based rating elicitation." RecSys 2011.

[12] Barkan, Oren, et al. "Anchor-based collaborative filtering." CIKM 2021.

^[6] Koren, Yehuda, et al.. "Matrix factorization techniques for recommender systems." Computer 2009.

Evaluation Results (@10)

Model	ML-1M		AmazonVid		lfm2b-1mon	
	NDCG	Ηιτβατιο	NDCG	ΗιτΓατιο	NDCG	ΗιτΓατιο
MF	.326	.571	.140	.255	.118	.215
RBMF	.282	.505	.093	.166	.279†	.384†
ACF	.335	.597†	.202†	.392†	.291†	.517†
U-ProtoMF	.333	.583	.152†	.276†	.179†	.322†
I-ProtoMF	.303	.544	.194†	.371†	.251†	.457†
UI-ProtoMF	.383†‡	.657†‡	.220†‡	.401†	.347†‡	.579†‡

Table 2: Evaluation results w.r.t. accuracy metrics at cutoff 10. The sign † indicates significant improvement over MF while ‡ indicates significant improvement over ACF.

Explaining UI-ProtoMF Recommendations

(a) U-РкотоМF

(b) I-РкотоМF

User Prototype 53	User Prototype 40	User Prototype 37	Item Prototype 3	Item Prototype 2	Item Prototype 13
Roman Holiday	Runaway Bride	Cinderella	City of Angels	Broadway Melody, The	Chambermaid on the Titanic, The
Comedy/Romance	Comedy/Romance	Anim. Children's Musical	Romance	Musical	Romance
To Catch a Thief	She's All That	Little Mermaid, The	It Could Happen to You	Slipper and the Rose, The	Dreaming of Joseph Lees
Com. Romance Thriller	Comedy/Romance	Anim. Child. Com. Musical	Drama/Romance	Adventure/Musical/Romance	Romance
Sabrina	Affair to Remember, An	Sleeping Beauty	Walk in the Clouds, A	Penny Serenade	Passion of Mind
Comedy/Romance	Romance	Anim. Children's Musical	Drama/Romance	Drama/Romance	Romance/Thriller
Sleepless in Seattle	Double Jeopardy	She's All That	One Fine Day	Perils of Pauline, The	Golden Bowl, The
Comedy/Romance	Action/Thriller	Comedy/Romance	Drama/Romance	Comedy	Drama
While You Were Sleeping	Ever After: A Cinderella Story	101 Dalmatians	Sommersby	Damsel in Distress, A	Up at the Villa
Comedy Romance	Drama/Romance	Animation Children's	Drama Mystery Romance	Comedy Musical Romance	Drama

Thank you for your attention!

Code, dataset splits, and more are hosted on <u>https://github.com/hcai-mms/ProtoMF</u>

ProtoMF: Prototype-based Matrix Factorization for Effective and Explainable Recommendations

Alessandro B. Melchiorre Navid Rekabsaz alessandro.melchiorre@jku.at navid.rekabsaz@jku.at Institute of Computational Perception, Johannes Kepler University Linz and Human-centered AI group, Linz Institute of Technology Linz. Austria Christian Ganhör christian.ganhoer@jku.at Institute of Computational Perception, Johannes Kepler University Linz Linz, Austria Markus Schedl markus.schedl@jku.at Institute of Computational Perception, Johannes Kepler University Linz and Human-centered AI group, Linz Institute of Technology Linz, Austria

