

Personality Correlates of Music Audio Preferences for Modelling Music Listeners

Alessandro B. Melchiorre (alessandro.melchiorre@jku.at) Markus Schedl
(markus.schedl@jku.at)
Johannes Kepler University Linz (JKU) and Linz Institute of Technology (LIT), AI Lab, Austria

Institute of
Computational
JOHANNES KEPLER UNIVERSITY LINZ

Introduction

- Personality has significant associations with music tastes.
- Past studies considered genres or styles as music preferences.
- In this paper, music preferences are expressed in terms of audio features such as:

Audio Features

- Energy
- Loudness
- Tempo
- etc.
- Personality is expressed through the five-trait (OCEAN) model.
- Are there significant correlations between listeners' personality traits and the audio features of the music they listen to? And if so, how strong are these correlations?
- Example application: Cold-start scenario in music recommendation systems.

JOHANNES KEPLER
UNIVERSITY LINZ

Data Acquisition and Processing

- Dataset containing personality and listening history of 1,470 users. 35 million listening events and 2.5 million tracks with audio features.
- Subset of the MyPersonality dataset.
- Listening histories are crawled from Last.fm.
- 12 Audio features are retrieved from Spotify.
- Reduced to 1,346 users for ensuring quality of the results (see later).
- Dataset is publicly available ${ }^{1}$.
- Acousticness
- Danceability
- Duration
- Energy
- Instrumentalness
- Liveness
- Loudness
- Speechiness
- Tempo
- Valence
- Mode
- Popularity

1] https://gitlab.cp.jku.at/alessandro/pers-corr

Methodology

- For each user we build a music preference profile.
- We aggregate the audio features of the tracks the user has listened to.
- For each feature, we compute the mean, standard deviation, and the skewness. For binary features, we compute the percentage.
- Tracks listened multiple times will contribute more than tracks listened only once.
- We ensure a minimum number of listening events per user.
- Drop all users with fewer than 30 listening events.
- We then analyse the relationship between the traits and the aggregated audio features.
- Spearman's correlations with confidence values $5 \%, 1 \%, 0.1 \%$.

(mean, std, skew) x feature

- False Discovery Rate (FDR) with q-value 5%.

JOHANNES KEPLER
UNIVERSITY LINZ

Results

ope	0.186***	0.182***	-0.179***	$-0.104 * * *$	-0.018	0.147***	-0.313***	0.269***	0.139***	-0.079**	0.023	0.121***	-0.22***	-0.051	0.086**	-0.065*	$0.172^{* * *}$	0.058	0.0
con	-0.035	-0.035	0.038	-0.048	-0.036	0.057	-0.005	-0.023	0.029	-0.051	-0.072**	-0.009	-0.029	-0.024	0.004	0.008	-0.018	0.011	0.004
ext	$-0.079 * *$	-0.079**	0.081**	-0.014	-0.018	0.02	0.03	$-0.09 * * *$	0.056	0.05	0.062	-0.088**	-0.027	-0.035	0.01	$0.111^{* * *}$	-0.016	$-0.115^{* * *}$	-0.022
agr-	$-0.078^{* *}$	-0.063	0.081**	-0.096***	-0.085**	0.079**	-0.009	-0.008	0.063	$-0.074^{* *}$	-0.033	0.046	0.006	0.035	-0.052	0.031	-0.003	-0.012	-0.107***
neu -	0.011	0.001	-0.013	0.025	0.007	-0.019	0.04	-0.016	-0.063	-0.017	-0.043	0.01	0.049	-0.009	-0.013	-0.045	0.007	0.035	0.018

${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$. p-values adjusted with FDR at q-value of 5%.

JOHANNES KEPLER
UNIVERSITY LINZ

Conclusion and Future Work

- There are significant correlations between listeners' personality traits and the audio features of the music they listen to.
- Future work:
- Predict the personality of the user from listening behavioural data.
- Quantify the effect of personality in both cold- and warm-start scenarios in music recommender systems.
- Study if users with different personality are treated equally by recommender systems.

Thank you for your attention!

JOHANNES KEPLER
UNIVERSITY LINZ

