

Personality Correlates of Music Audio Preferences for Modelling Music Listeners

Alessandro B. Melchiorre

(alessandro.melchiorre@jku.at)

Markus Schedl

(markus.schedl@jku.at)

Johannes Kepler University Linz (JKU) and Linz Institute of Technology (LIT), AI Lab, Austria

Introduction

- Personality has significant associations with music tastes.
- Past studies considered genres or styles as music preferences.
- In this paper, music preferences are expressed in terms of audio features such as:
 - Energy
 - Loudness
 - Tempo
 - o etc.
- Personality is expressed through the five-trait (OCEAN) model.
- Are there significant correlations between listeners' personality traits and the audio features of the music they listen to? And if so, how strong are these correlations?
- Example application: Cold-start scenario in music recommendation systems.

Personality

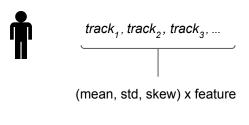
Audio

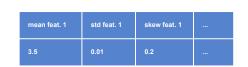
Features

Data Acquisition and Processing

- Dataset containing personality and listening history of 1,470 users. 35 million listening events and 2.5 million tracks with audio features.
 - Subset of the MyPersonality dataset.
 - Listening histories are crawled from Last.fm.
 - 12 Audio features are retrieved from Spotify.
- Reduced to 1,346 users for ensuring quality of the results (see later).
- Dataset is publicly available¹.

- Acousticness
- Danceability
- Duration
- Energy
- Instrumentalness
- Liveness
- Loudness
- Speechiness
- Tempo
- Valence
- Mode
- Popularity


1] https://gitlab.cp.jku.at/alessandro/pers-corr



Methodology

- For each user we build a music preference profile.
 - We aggregate the audio features of the tracks the user has listened to.
 - For each feature, we compute the mean, standard deviation, and the skewness. For binary features, we compute the percentage.
 - Tracks listened multiple times will contribute more than tracks listened only once.
- We ensure a minimum number of listening events per user.
 - Drop all users with fewer than 30 listening events.
- We then analyse the relationship between the traits and the aggregated audio features.
 - Spearman's correlations with confidence values 5%, 1%, 0.1%.
 - False Discovery Rate (FDR) with q-value 5%.

Results

	v e	ening events	ke	Jularity mean	opularity std	popularity	ken stic	ness mean	iness std acousti	cness skew	ability mean	eability std	eability skew	on ms mean	ion me std	on me skew	mean energy	std enem
-	* 1151.	aning # trac	Poc	briting	OPUT	Pobri	acouls	acouls	acous	dance	danc	danc	durat	durat	durat	energ	energy	ener
ope -	0.051	0.095***	-0.133**	-0.04	8 0.10	2*** 0.	284***	0.297***	-0.281***	0.007	0.215***	-0.014	0.106***	0.205***	0.149***	-0.283***	0.281***	0.263***
con -	-0.092***	-0.097***	0.011	0.04	1 -0.0	122 (0.003	-0.024	-0.001	0.03	-0.049	-0.06	0.013	-0.058	-0.045	-0.012	-0.038	0.011
ext -	-0.102***	-0.091***	0.047	0.042	2 -0.0	56 (0.014	-0.03	-0.019	0.13***	0.011	-0.021	-0.074**	-0.072**	-0.056	-0.016	-0.076**	0.038
agr -	-0.071**	-0.074**	0.059	0.01	7 -0.0	153 0	.082**	0.067*	-0.083**	0.051	-0.041	-0.081**	-0.07*	-0.07*	-0.023	-0.076**	0.037	0.073**
				0.00	8 0.0	06	0.057	-0.026	0.06	-0.073**	-0.029	0.069*	-0.027	0.005	0.017	0.051	-0.007	-0.066*
neu -	0.079**	0.067*	0.015	-0.03	0.0	-	0,007	01020			70.55							75.00.00
neu -												es std			42.	ean	. A	. en
neu -												iness std	sken		tempo skem	alence mean	ence std Valer	ce skem
neu -	instrun	nentalhess mer	an instrum										ess skem	an tempo std	tempo sten			olori
L T	instrun	nentalhess mer	an instrum	hertalness st.	ew 5 mean livenes	5 std livery	ess skew loud	iness mean loud	ness std	ess skew speed	niness near		tempo nei	tempo std		5* 0.172**	* 0.058	
ope -	0.186***	netture 0.182*** -0.035	on instrum	entainess sk	EM INERE	55 gtd (iven)	-0.313***	ness nean loud	ness std loudi	speed -0.079**	speech	0.121***	-0.029 -(rempo atd rempo 2.0051 0.0051 0.0024 0.0024	86** -0.06	5* 0.172 **	* 0.058	0.0
ope - con -	0.186*** -0.035	0.182*** -0.035	o.179***	-0.104***	5 mean intener	0.147*** 0.057	Journal -0.313***	ness nean houd	0.139*** 0.029	-0.079**	speech 0.023	0.121*** -0.009	-0.029 -0.027 -0.027	tempo std tempo std 0.051 0.024 0.035 0	86** -0.06 0004 0.00	5* 0.172** 8 -0.018 *** -0.016	* 0.058 0.011 -0.115***	0.00

* p < 0.05, ** p <0.01, *** p < 0.001. p-values adjusted with FDR at q-value of 5% .

Conclusion and Future Work

- There are significant correlations between listeners' personality traits and the audio features of the music they listen to.
- Future work:
 - Predict the personality of the user from listening behavioural data.
 - Quantify the effect of personality in both cold- and warm-start scenarios in music recommender systems.
 - Study if users with different personality are treated equally by recommender systems.

Thank you for your attention!

