
Explainability in Music Recommender Systems

DARIUS AFCHAR∗, Deezer Research, Paris, France

ALESSANDRO B. MELCHIORRE∗ and MARKUS SCHEDL, Johannes Kepler University and Linz Institute

of Technology, Linz, Austria

ROMAIN HENNEQUIN, ELENA V. EPURE, and MANUEL MOUSSALLAM, Deezer Research, Paris,

France

The most common way to listen to recorded music nowadays is via streaming platforms which provide access to tens of millions
of tracks. To assist users in effectively browsing these large catalogs, the integration of Music Recommender Systems (MRSs) has
become essential. Current real-world MRSs are often quite complex and optimized for recommendation accuracy. They combine
several building blocks based on collaborative filtering and content-based recommendation. This complexity can hinder the ability to
explain recommendations to end users, which is particularly important for recommendations perceived as unexpected or inappropriate.
While pure recommendation performance often correlates with user satisfaction, explainability has a positive impact on other factors
such as trust and forgiveness, which are ultimately essential to maintain user loyalty.

In this article, we discuss how explainability can be addressed in the context of MRSs. We provide perspectives on how explainability
could improve music recommendation algorithms and enhance user experience. First, we review common dimensions and goals
of recommenders’ explainability and in general of eXplainable Artificial Intelligence (XAI), and elaborate on the extent to which
these apply – or need to be adapted – to the specific characteristics of music consumption and recommendation. Then, we show
how explainability components can be integrated within a MRS and in what form explanations can be provided. Since the evaluation
of explanation quality is decoupled from pure accuracy-based evaluation criteria, we also discuss requirements and strategies for
evaluating explanations of music recommendations. Finally, we describe the current challenges for introducing explainability within a
large-scale industrial music recommender system and provide research perspectives.
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1 MUSIC RECOMMENDER SYSTEMS

Recommender System (RS) technology permeates our daily lives; whether we are looking for a book to buy, movie
to watch, or accommodation for our next vacation, RSs are omnipresent. Like RSs in other domains [93], Music
Recommender Systems (MRSs) [98] have information filtering algorithms at their core, which select from a commonly
huge catalog of music items (e. g., artists, albums, or songs) those identified as most relevant for a target user. Thus
MRSs guide users in the otherwise sheer overwhelming amount of music available at their fingertips nowadays.1

The raising awareness of, and ongoing discussion about, transparency of machine learning algorithms, including
those used in RSs, has resulted in a substantial demand from users to receive explanations for why certain items have
been recommended to them [118]. Also from a RS provider’s perspective, these aspects are important for building and
∗Both authors contributed equally to this research.
1The catalogs of music streaming platforms such as Deezer, Spotify, or Pandora include several tens of million music pieces.
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maintaining trust of the users in the system. Therefore, equipping MRSs with capabilities to provide explanations to
their users is of mutual interest.

1.1 Characteristics of music consumption and music recommender systems

While music recommendation shares some properties with other media recommendation tasks, such as videos or movies,
there exist also pronounced differences. Among the ones identified in literature (e. g., [99]), the following characteristics
are relevant for explainability in MRSs, as we will elaborate in the subsequent sections:

• The duration of item consumption is commonly much shorter than in other domains, i. e., songs have typical
lengths of several minutes, whereas watching a movie, reading a book, or spending a holiday take much longer.
• Music data comes inmanifold representations, including audio, MIDI, and textual metadata (e. g., editorial metadata
but also user-generated tags). Furthermore, music-related data that can be leveraged in MRSs is highly multimodal
and includes images (e. g., album covers) and videos (e. g., music video clips), next to audio and textual metadata.
Finally, user feedback is collected from various activities (e. g., likes, favorites, song skips).
• The listening context strongly affects music preferences [48]. For instance, the listener’s mood, location, (e. g., con-
sumption at home vs. while commuting), social situation (e. g., alone vs. with friends) and other aspects have
been shown to influence musical needs and demands [35, 91].
• Music is often consumed sequentially, i. e., tracks in a listening session or playlist. Therefore, for music, we often
focus on sequential recommendation tasks, such as automatic playlist creation or continuation [13, 117], that
leverage both long-term and short-term user preferences.

1.2 Common music recommendation tasks and methods

Various use cases of MRSs exist, centered around different tasks. Among these, the most important ones are front
page recommendation (recommending content for thematic collections of music – also known as shelves or channels –
presented to the user on the front page of the platform’s user interface) [11], music exploration/discovery (e. g., based on
item similarity in terms of melody, rhythm, or lyrics) [41, 60], automatic playlist generation (commonly based on the
user profile, but possibly only based on a seed description such as “music to relax”), and automatic playlist continuation

(based on a sequence of seed tracks) [50, 117].
To create a music recommendation engine, a variety of methods are adopted, depending on the use case. These

include latent factor models (e. g., singular value decomposition [56] or factorization machines [68]), graph mining
techniques (e. g., random walks [40] or graph embeddings [84]), and deep learning-based techniques (e. g., convolutional
neural networks [109], recurrent neural networks [47], or autoencoders [66]). Furthermore, techniques from audio
signal processing and natural language processing are often used to create vector representations of music items or to
annotate music items with relevant tags [33, 49, 82].

In this article, we discuss how explainability can be approached in MRSs, and we provide perspectives and outline
challenges in this context. More precisely, we first review definitions and goals of explainability commonly adopted in
RS research, and investigate to which extent they are applicable or need adaptation in the music domain (Section 2).
Subsequently, Section 3 reviews existing explanation types and describes the means through which explanations can be
provided to the users, and the methods to integrate explainability capabilities into MRSs. How to evaluate the offered
explanations in a music recommendation context is discussed in Section 4. Finally, taking an industry perspective,
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Section 5 describes the challenges MRS providers face when integrating explainability functionality into their real-world
systems.

2 GOALS AND DIMENSIONS OF EXPLAINABILITY FOR MUSIC RECOMMENDER SYSTEMS

Recent years have seen an upsurge of interest in explainable recommendations, even though the concept already
emerged in the 2000s [97]. This evolution of explainable RSs has been accompanied by an increasing popularity of
eXplainable Artificial Intelligence (XAI), with which it shares roots, approaches, and terminology. XAI represents the
convergence of many research disciplines, including computer science, human-computer-interaction, philosophy, and
psychology. Coherent and stable XAI definitions and terms have started to appear only recently [8, 43, 67]. Meanwhile,
RSs research has developed explanation-related concepts that are unknown to general XAI, some of which, however,
rest upon elusive descriptions. This specificity is probably due to the nature of RSs themselves, which differ w. r. t. their
tasks, inputs, and results from general trends in XAI. Linking these two explainability realms would not only result in a
more standardized approach to explanations in RSs but also in a direct application of methods from XAI to MRSs.

In this section, we review definitions and concepts of explainability in RSs. Subsequently, we compare and connect
them with the ones of XAI. Note that this is not a survey of XAI or explainable RSs as other valuable resources exist on
this matter [8, 38, 43, 81, 105, 118].

2.1 Definitions and goals of explainability for MRS

What does it mean to explain a recommendation? Within the RS field, Tintarev et al. [106] addresses this question
with "to make clear by giving a detailed description", and Zhang et al. [118] with "an explainable recommendation aims

to answer the question of why". We can thus discern a role of explanations as complementary information to the
recommendation. But these definitions are limited; for instance, ensuring fair recommendations involves tracing the
"why" of a recommendation, but only regarding certain critical aspects (e. g., potential gender biases) and it does not
tell how to act upon them. As we develop next, "complementary information" and "fair recommendations" shape two of
the many facets of explainability.

Borrowing general ideas from recent harmonization efforts of XAI terms, it is more convenient to distinguish between
explanation objects and goals. In particular, explanations designate the result of an explanation system, they form an
"interface between the system to explain and a target audience" [43]. Quite interchangeably with explainability, we will
use the term interpretability, with a more passive characteristic: a system can be interpretable – e. g., decision trees
are often interpretable, neural networks are not. The opposite notion is often referred to as blackboxness. We stress
that automatically concluding that trees and linear regressions are interpretable and that neural networks are not
is questionable.2 As we will see next, this depends on a precise formulation of explanation tasks that do not admit
one-size-fits-all rules.

The previous mention of "audience" is essential, since a given explanation type may only convey meaningful
information to specific people. In RS research, the target audience of explanations is usually end-users as they are
the targets of the recommendation decision and could be skeptical about it. Nevertheless, other stakeholders may be
interested in receiving explanations, e. g., system designers and data scientists may inquire wherever their system bases
its decisions on discriminatory biases from the data.

2The existence of a general interpretability/accuracy trade-off seems a myth [67, 94], despite its persistent mentions in some XAI papers.



4 Afchar et al.

We shall continue with a cautionary tale: the disparate notions of explainability have led to many misuses of XAI
[67]. Because we usually do not have access to ground-truth explanations in the wild, and realistically will not in
industrial contexts, many XAI works have relied on intuitive notions of what their target explanations should be. This
first makes evaluation difficult. As F. Doshi-Velez [31] highlights, the relevance of explanations is often suggested in a
"you’ll know it when you see it" fashion, which paves the way to many confirmation biases. Second, several counter-
intuitive results have been unveiled. For instance, the widely agreed-upon idea that an interpretable model is more
desirable than a blackbox one has been challenged: produced explanations – similarly to model predictions – may be
misleading or biased [3, 28, 29, 54, 94]. Moreover, without clear formulations of explanation tasks, how can several
XAI systems be compared? Can we actually quantify interpretability and explanation quality? Can the relevance of
proposed interpretation metrics be assessed? How can we detect misinterpretations and explanations based on spurious
mechanisms? All those questions circle back to the definition of explanations.

Ef�cency 
help users make decisions faster

Effectiveness 
help users make good decisions

Transparency 
explain how the system works

Trust increase users' con�dence in the
system

Scrutability help users to tell when the
system it is wrong

Persuasiveness 
convince users to try or buy

Satisfaction increase the ease of use or
enjoyment

Interactivity  allow to tweak a model to
the target audience's needs

Causality study causal effects, not just
correlations from models and data

Informativeness support decision-
making with additional information

Fairness avoid leveraging sensitive traits
and societal biases for decisions

Trustworthiness build the con�dence
that the model will act as intended

Con�dence increase the reliability of the
model (eg. robustness, stability) 

XAI AXIS (Arietta et al.)

RS AXIS (Tintarev et al.)

Fig. 1. RS and XAI explanation goals and linking. We display "one-liner" definitions for conciseness. A solid line indicates a
strong correspondence, a dotted line a weaker one that depends on the exact task and context. Satisfaction could have been linked to
everything but links are omitted for clarity.

In addressing these questions, the concept of incompleteness was proposed. Its purpose is to characterize the "missing
piece" justifying the use of an explanation system [31]. Here, the literature of explainable RSs and general XAI diverges.
A distinction of the goals of RS explanations is proposed in [106], which delineates seven of them. We can enrich
this discussion with goals identified in general XAI by Arietta et al [8]. Both sets of goals are displayed in Figure 1
with short definitions. We find that neither of the two may solely account for all MRS purposes: Explainable RS goals
mostly fall into the informativeness category. This has a broader scope than RS transparency that feels too focused on
the decomposition of models’ inner mechanisms. Furthermore, RS goals have been found to be intercorrelated [9],
in particular, satisfaction being arguably a desired byproduct of any explanation method. That said, persuasiveness is
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a strong dimension of RSs that is absent from general XAI [32]; when aiming at transparency, creating a persuasive
system may appear contradictory.

Identifying those goals is crucial because explanations may simply not be needed if incompleteness is not an issue.
Evaluation should then be conducted with regard to each targeted incompleteness, to avoid mismatched objectives.
Lastly, the concept of understandability simply bridges the gap between a chosen XAI system and this new notion of
goal/incompleteness being addressed for a target audience. All these notions are illustrated and placed accordingly in
Figure 2. We discuss additional taxonomic axes for XAI in subsequent paragraphs.

As a final note, explainability can be framed through an interesting take from Michael Jordan on the future of
machine learning.3 The goal of XAI is not only for decision-makers to understand model predictions, but to allow a back
and forth interaction between the two.Why do you make this decision?What if this aspect was different? Then what if
this aspect was different? "Consequential decision involves thinking about new facts that were never put in the original

data, that are relevant to the current situation." The purpose of the discussion on incompleteness and understandability

is to go beyond the view of explainability as a mere complementary prediction, but to allow this reciprocal gain of
knowledge between several actors.

Data Model Prediction

Target
Audience

Data-focused
explanations

Model-focused
explanations

Understandability

post-hocintrinsic
interpretability

localglobal

ML SYSTEM

unsupervisedsupervised
informativeness

fairness
causality

interactivity
...

is the model
blackbox?

are there target explanations
associated with ground-truth

predictions?

what is the scope of
the explanation? 

what is the type of
incompleteness we try

to overcome?

XAI AXIS

learning inference prediction
task

relates to ML

relates to XAI

representation

Fig. 2. Overview of XAI notions. In the upper part, a MLmodel is trained on data and used to make predictions . Beyond prediction,
if the model alone is insufficient w. r. t. an underlying human-grounded application, the use of an XAI method will be justified. The
specification of the target audience delineates incompleteness to be addressed through explanations, along different explanation axis
(lower part).

3Math & IA seminar: https://vimeo.com/522733917

https://vimeo.com/522733917
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2.2 Local/Global scope

As MRSs commonly provide numerous recommendations, there is a focal distinction to make in the explanations
scope: local vs. global [31]. Local or instance-wise explanations target the decision of the model for a specific input-
recommendation pair, e. g., explaining that a track was recommended to an end-user because some of its features
matched. Local explanations must be tailored to each individual prediction. This type of explanation is aligned with the
European General Data Protection Regulation (GDPR) "Right to explanation" [85], which entitles users to inquire about
the reasoning behind the outcome of an algorithm, hence supporting informativeness as an explainability goal.

In contrast, global explanations provide a big picture of the model logic, covering multiple model decisions. For
instance, estimating clusters of machine-learned user embeddings may help rationalize the behavior of the MRS within
several general communities. This broad view of the model is necessary to detect systematic biases of the model
(addressing fairness goals) and to examine wherever a model is suitable for deployment (addressing informativeness,
trustworthiness, and confidence). Lastly, note that the two types may be linked: it is sometimes relevant to craft a global
explanation by providing multiple local explanations [92].

2.3 Intrinsic/Post-hoc interpretability

We can also distinguish explanation systems w. r. t. whether interpretability should be an inherent part of the RS–intrinsic
interpretability, or should be provided as an addition to an already working RS–post-hoc interpretability.

Intrinsic interpretability refers to the ability of the RS to provide sufficient information to make its inner functioning
clear to a specific audience [8]. In this case, the explanations coincide with the model. Being inherent in the model,
intrinsic interpretability has to be planned in advance, making it a component of the model design. For instance, an
Item-k-Nearest Neighbours model recommends artists because they are similar to the ones the user listened to, thus
allowing explanations such as "We recommend you <artist> because it is similar to <artist(s)>".

Post-hoc or extrinsic interpretability refers to the use of external XAI to yield knowledge from a blackbox model.
It can be considered as reverse engineering the model [43]. For example, the recommendations of a blackbox model
can be explained by making a post-hoc selection of the relevant features that lead to the recommendation; they offer
explanations such as "We recommend you this because it has <feature(s)> you may like". Both intrinsic and post-hoc
views are affiliated with the concept of transparency, thus supporting informativeness, causality, and confidence.
However, post-hoc explanations are hampered by their externalness and require an additional check of their faithfulness
to the studied model. Yet, compared to intrinsic, they disentangle model design from explanation design, allowing to
consider XAI systems in a later stage, or to apply them to already working models.

2.4 Un/supervised explanations

We often think of XAI methods as being unsupervised. Particularly on the end-user side, it is arduous to guess which
could be the ground-truth explanations for the user since their judgment of what a good explanation is may be biased
[75]. Nevertheless, target explanations are sometimes available [9]. But far from making it a supervised task, our goal is
not only to make explanation predictions but to address an incompleteness; the relevance of the target predictions
thus has to be questioned. Do these really address our needs w. r. t. to incompleteness? Or are they a proxy for it? In
the latter case, how do we assert/evaluate their understandability w. r. t. our goal? We present two ideas from XAI for
supervised explanations in the image domain that could be applied to MRS.
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In the field of image classification, some datasets gather images with textual descriptions. Each set of words can
be matched against corresponding visual aspects in the images, enabling to generate visual explanations for class
prediction of unseen instances through RNN-generated texts [45]. The explanations are evaluated against held-out test
descriptions. Here, the concept of explanation is driven by two desiderata, first as a way to link different modalities of
a same object – image and text, and second as a rationale that conveys useful information by yielding class-specific
information that differentiate it from other classes. Obtaining this informative discriminative quality is tricky in an
unsupervised setting. The multimodality of music data (e. g., audio, lyrics, users, playlists) makes it a good candidate for
this paradigm.

We can identify another line of supervised explanations as linking different conceptual levels. The TCAV method
[55], for instance, allows to check predictions against human-understandable concepts, e. g., how much the model
prediction for an image of a zebra is sensitive to "stripeness". Again, there is an interesting link to music: there is a
known and unresolved semantic gap between low-level data (i. e., audio signal) and its correspondence to high-level
descriptions (e. g., genre, mood) [17].

2.5 Model/Data

We conclude this section with a paramount yet subtle distinction that is prone to be overlooked: are the explanations
related to the RS model processing or to the data it represents?

Model explanations, on one side, focus on a learned representation and parameters and aim at making sense out of it.
With a mild exaggeration, to the question "why is this track recommended by the MRS given my history?" a model-focused
answer of a RS might be "it maximizes the probability of being co-listened with your history, considering all other users

listening history". Data explanations, on the other side, would rather focus on "why are those items co-listened in the first

place?". The trained model by itself is less interesting than the goal of uncovering "natural mechanism[s] in the world"
[19]. In practice, in the first case, the model inspection may expose irregularities and lead to adjust its architecture and
regularization (e. g., balancing fairness trade-off parameters); in the second case, the model plays the role of a proxy
representation of data, detected errors would more suitably be attributed to a misrepresentation of input data (e. g.,
feature engineering for a better matrix factorization), and the ultimate goal is to find a structure that is credible given
prior knowledge of the problem.

These aspects are often entangled. Explaining the model provides little information with noisy data, and explaining
the data may be misleading if the model assumptions do not capture salient aspects (e. g., correlation instead of causation).
It is a widespread fallacy to explain a model (which is often easier, particularly when using transparent models), when
the true underlying objective is to explain data. As a corollary, critics of XAI often oscillate between "the method is
unreasonable for explaining the model" (e. g., randomizing the model’s weights does not change the explanation [3])
and "the produced explanations, though relevant for the model, do not make sense for humans", without explicitly
mentioning this duality [90].

3 MAKING MUSIC RECOMMENDER SYSTEMS EXPLAINABLE

In the previous section, we have drawn links between explainability in RSs and XAI, and presented different definitions.
Bearing these definitions in mind, we now study different ways MRSs can be made more explainable. We start with a
general overview of possible explanation methods for MRSs, then discuss the adaptability of three relevant explanation
paradigms to MRSs.
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3.1 Overview of explanation methods for MRSs

We want to provide the reader with a short background on existing explanation methods for RSs, and then discuss how
the latter are particularized for MRS.

Explanations of RSs. Zhang and Chen [118] characterizes six RSs explanation types. First, relevant item or user expla-
nations, also called example-based explanations, are bonded with item-based or user-based collaborative filtering [2].
Thus, a recommendation is motivated either by the similarity of the item to other items previously liked by the user, or
by the affinity that similar users have towards the recommended item.

Second, there are feature-based explanations, which are associated with content-based recommendation algorithms.
Explanations are commonly shown as tags relevant to a user or an item [118]. Opinion-based explanations focus on
relevant aspects of the recommended item [112, 119], which can be enriched with a sentiment [119]. In contrast to
feature-based explanations leveraging item metadata or user profiles, opinion-based aspects are mined from reviews or
social media posts.

Further, we also distinguish sentence, visual, and social explanations. Sentence explanations can be predefined
templates with placeholders regarding features or aspects/opinions filled on-the-fly depending on the recommen-
dation or specific user (e. g., "We recommend this item because its [good/excellent] [feature] matches with your

[emphasize/taste] on [feature]") [112]. Alternatively, sentence explanations can be generated from scratch using
language models trained on reviews [25]. Visual explanations appear as images or visual elements often accompanied
by text [7, 21]. Image regions or caption words that explain the recommendation could be highlighted [21]. Social
explanations mention either the user’s friends who liked the recommended item [102] or their overall number.

Extension to MRSs. Explanations in MRSs have multiple specificities. First, they can be based on audio. As voice assistants
are becoming increasingly popular in music consumption [100], researchers have been looking into how to augment
recommendations with audio music explanations. One line of work proposes listenable explanations [10], inspired from
radio shows in which hosts provide information about played tracks for creating transitions. Alternatively, item parts
such as track snippets focusing on a particular audio source (e. g., instrument or voice [72]) can be emphasized as
reasons for recommendation.

Second, whenever recommendations are provided as collections of items (e. g., playlists), explanation generation can
be modeled as playlist captioning (i. e., the automatic generation of a title and/or a description of the playlist) [23] or
playlist stories generation [10]. Existing work usually relies on predefined textual templates [10].

Third, music explanations are rarely informed by a unique data source. Knowledge Graphs (KGs) are constructed from
external sources and used for explanations [83]. Information sources leveraged in existing work are: user-generated text
such as music descriptions [120], existing knowledge bases like MusicBrainz or Wikipedia, [77], tags describing items or
users [62, 120], social information such as users’ friends [62, 102], audio features [7], or pre-trained tag embeddings [7].

We next discuss in detail feature-based explanations (Section 3.2), example-based explanations (Section 3.3), and
graph-based explanations (Section 3.4). We refer to Figure 3 for examples of each explanation type.

3.2 Feature-based explanations

MRSs rely on multi-modal information (or features) in order to provide personalized recommendations to users. It
is therefore legitimate to ask which features are most responsible for the generated recommendation. Feature-based
explanations aim at answering this question by identifying a minimal subset of features that are relevant for the
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We have built this playlist of 
recommendations just for you, because ...

... it's based on 70's psychedelic rock music

FEATURE-BASED EXPLANATIONS

<user taste cluster>

... it's based on Pink Floyd, The Doors and Tangerine Dream

EXAMPLE-BASED EXPLANATIONS

<hook> <hook> <discovery>

... you love the band 13th Floor Elevators that pioneered
psychedelic rock in the 60's and we thought its continuation

in the 70's may interest you

KNOWLEDGE-GRAPH-BASED EXPLANATIONS

Fig. 3. Summary of explanation types. We show some informativeness-oriented explanation examples that may be provided to an
end-user for which a personalized playlist has been generated.

recommendation. For instance, such explanations may be "We recommend you this song because it is ’90s rock, a combo

of era and genre you enjoy listening to." where the genre and era represent the relevant features.

Relevance. Feature-based explanations are only relevant if the features are themselves interpretable. Furthermore,
feature selection is an NP-hard problem [80] and real-word applications necessarily rely on feature assumptions: e. g., a
limited number of interacting features [20, 69], group or structure coherence [4, 121], feature independence [92], or
first order approximations [103].

Applications. Frequently, considered features are selected and ranked through a relevance score. More than just the
top-contributing features, displaying or visualizing all the scores is a common practice among data scientists, acting as
an encompassing explanation [54], though the information overload may be misleading [89]. Note that "relevance" for a
feature is a polysemous term that inherently depends on the used selection method. As illustration, both SHAP [70] and
L2X [20] assign relevance scores to single features, however, while SHAP expresses relevance in terms of marginalized
contributions of features across all possible subsets, L2X encodes relevance as a notion of informativeness on the
response variable through maximizing mutual information. We refer to [12, 26, 104] for surveys and further details on
selection methods.

Applied to MRSs, feature explanations may be related to users, items, to the context, or a combination of the previous.
User features stretch from reasonably static characteristics (e. g., country of origin, age group, personality) to constantly-
changing traits (e. g., tastes, recent interests, mood). These features offer a fertile ground for tailored recommendations,
and thus tailored explanations such as "We recommend you this track because it suits your current emotional state" or
"... because of your country of origin". However, the effectiveness of these explanations may be hindered by unreliable
estimates of some user’s variables, notably dynamic ones. Fairness-wise, societal biases in RSs often stem from the
usage of sensitive user features, an analysis of their impact on recommendations being crucial to be able to temper with
them.
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Alternatively, item features are usually more objective and come in different types and granularity. For example, audio
features cover low-level features (e. g., spectrograms, beats) [78, 88], mid-level features (e. g., articulation, melodiousness)
[5, 86], or high-level features (e. g., danceability, emotion) [57, 73], as well as metadata (e. g., genre, social tags) [59].
Explanations involving these features are strongly tied to content-based recommendation [118] as they directly match
the user’s preference profile (e. g., "We recommend you this because it has the tempo/genre you like").

Lastly, miscellaneous context features may be suited for generating personalized explanations. Time and location,
being the most popular ones, provide a sound contextualization for the recommendation such as "This techno masterpiece

is perfect for tonight’s Friday’s party!" or "Since you are doing home-office these days, we recommend you this ’Work from

Home’ playlist".

Evaluation. Feature-based explanations are tied to a chosen definition of relevance. Their approximations can be
compared to full computation results, when affordable. However, it may be tricky to evaluate whether the relevance
scores themselves translate to true relevance. What is relevant for a trained model indeed reveals correlated events in
the data, with the risk of returning spurious relations instead of causal truth about the data. As another pitfall, many
feature selection methods do not handle intercorrelated features well [116], which are however common with MRSs.

3.3 Example-based explanations

In MRSs, example-based explanations are a very common type of explanation, that can be reduced to the use of the
sentence template "We recommend you <this new item> because of <its similarity> to <meaningful item(s)>".
They are conceptually tied to Case-based RS [15].

Relevance. Similarly to feature-based explanations, they are only relevant if the given examples are themselves inter-
pretable for the target audience. This includes returning items that are known to the user: e. g., from a set of liked or
previously interacted items, or from broadly-known items.

Applications. Regarding example types, it is common to see artist examples as they convey a general sense of genre,
temporal period, or style. Relevant-user examples were popular in the past decades as they have the interesting social
twist of fostering users’ curiosity to find pairs with similar tastes. They have gradually vanished from most music and
video streaming platforms since they were found less convincing and accurate than item-based explanations, and in
turn may have a negative impact on trustworthiness [46]. Nevertheless, limiting social explanations to close circles was
found more relevant (e. g., "recommended tracks recently discovered by your friends"). Other than textual modalities,
explanations in MRSs include displaying album covers, which may convey information about the style or even allow to
recognize record labels (e. g., Deutsche Grammophon, Blue Note). Short audio thumbnails are also a promising way to
provide explanations that cannot be otherwise expressed with words [72].

As for similarity relations, we note they may not be explicitly stated in the explanation, or in some cases cannot even
be stated. This is particularly true for RSs basing their recommendation on co-listening data. With the same causality
counterpoints as before; a co-listening may be coincidental, confounded by external factors, or, more pragmatically,
may result from noisy metadata and inattentive users. With deep learning models that compute non-linear similarity
metrics (e. g., the NeuCF method [44]), it gets trickier as we are faced with an added blackboxness issue.

This can lead to explanation examples that feel cryptic to the user. Recent works in KG-based recommendations
are a way to alleviate this issue, we will discuss them in Section 3.4. Another lead lies in the disentanglement of the
embeddings’ latent dimensions that help rationalize proximity according to explicit concepts (e. g., audio features, genre,
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instrumentation) [65]. Attention-based mechanisms are also a promising way of providing recommendations based on
the selection of a reasonably small and contextual subset of neighbors [53], though claims on the interpretability of
attention are disputed [101].

Evaluation. It is useful to evaluate the discriminativeness of examples. Indeed, example-based explanations are affected
by popularity biases, which hampers informativeness. As illustration, "The Beatles" are streamed by many users with
diverse profiles, thus appearing in many co-listening relations and are likely to emerge as similar neighbors. But using
them as examples consequently lacks representativeness. On the other end, examples of niche artists are double-edged:
they can yield a powerful feeling of understanding of user taste, but if the recommended item falls too far off the
example style, and as the user sensibly connects with them, the explanation can feel disappointing.

Then, one should distinguish items coming from an explicit elicitation (e. g., liked artists) and implicit preferences.
The former are often meaningful to users but may make them feel trapped in a recommendation bubble, while the latter
are more diverse but potentially lack direct connection to users, affecting trust in explanations.

Examples can also be useful for persuasiveness goals. It may be interesting, for instance, to provide a set of examples
that include an item that is well-known to the user (acting as a hook) and unknown or weakly interacted ones (acting
as discoveries). This principle is quite common in radio "clock" programming, where alternating power songs and
discoveries has been shown to be a powerful tool to keep users engaged.

3.4 Graph-based explanations

Canonically, RSs match users and items. It is therefore not surprising that graph-based approaches on bipartite graphs

can be used, with users on one side and items on the other. The recommendation task may indeed be framed as link
prediction: given links of interactions between users and items, which unseen links are then probable? Likewise, similar
item recommendation can be formulated as the task of finding probable nearest neighbors in a graph of users.

Relevance. This framing can seem cumbersome, with a first strong hindrance that graph methods quickly get computa-
tionally expensive – though some works have demonstrated industrial-scale applicability [115]. Second, notions of
repeated music consumption, preference decay and accounting for a temporal dimension for sequential recommen-
dations are tricky to incorporate into graphs. Nevertheless, graph-methods possess an outstanding expressive power,
especially for multi-relational data, enabling abundant new RS applications.

Further justification lies in the graph structure naturally found in MRS data. Vertically, there is a natural hierarchy
for musical items: tracks are organized into albums, that are themselves children of artists, that can be regrouped into
genre, style, and time period, or any complex multi-leveled music ontology. Users exhibit a similar hierarchy, we can
often assign them to several clusters of interest, that are themselves linked to a given culture, country, or age category.
Horizontally, music item clusters act as islands of connected components, with central nodes being representative of
a given style and having influence on surrounding artists. Weakly connected nodes denote niche artists, and nodes
in-between clusters fuse several influences. The same reasoning may apply to users’ communities and hierarchies.

Applications. Graph analysis tools can be used to analyze node and edge structure. Detecting cliques and using 𝑘-

degeneracy can help represent communities. Tripartite and generally 𝑛-partite formulations allow to generalize canonical
recommendation by handling more actors than items and users, for example considering artists and context. Directional
edges can be leveraged to create graphs with asymmetrical relations and avoid recommending niche artists as being
similar to very popular ones [95]. Graph-specific embedding techniques may be applied, e. g., using random walks
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to train embeddings on more diverse sequences than observed data [42]. Other approaches are promising, such as
analysis of graph structure for domain-transfer ; application of the traveling salesman problem to find fluid playlist tracks
orderings; or continual learning by framing the addition of new users and items as new nodes that should not perturb
far away regions of the graph. All these tools address the transparency issue, leading to more interpretable models.

Interpreting structure is mostly useful for an audience of researchers, but recent advances in the field of knowledge-
graph-based recommendations show additional promising applications for end-users. The term KG refers to the use
of external expert-knowledge to better understand the entities at hand within a RS task and how they relate to one
another [30]. In the context of MRSs, available knowledge may include intra-music relations (e. g., "is sung by", "has
music label", "belongs to genre"), and collaborative information (e. g., "often streamed with", "user taste belongs to cluster").
The KG can be applied to enhance the representation of items before recommendation. For instance, the latent space
that is usually learned to compactly represent items can be structured to align with each item relations of the graph
[14, 114]. However, RSs may still fail to leverage the full power of KGs, solely relying on enhanced representations.
Instead, another approach is to directly incorporate KGs into the recommendation computation, which allows multi-hop
reasoning. For that, all paths (with a fixed maximum length) between a pair of user and item can be extracted, and
their relevance estimated [113]. This enables to produce explanations corresponding to paths of high probability (e. g., a
path User𝑖 −−−−−−−−→

listened to
𝐴 −−−−−−→

sung by
artist𝐴 −−−−−−−−→belongs to

label𝐿 ←−−−−−−−−belongs to
artist𝐵 ←−−−−−−sung by

𝐵 translates for user 𝑖 as "Track B

is recommended to you because it’s similar to A you listened to before, which is sung by an artist belonging to the same

indie music label 𝐿 as B."). For a complete survey of KG methods, we refer to [51].

Evaluation. The efficiency of those techniques is conditioned on a good modeling of the involved entities (i. e., nodes
and links), deep knowledge engineering, and an accurate estimation of the paths’ relevance while ensuring their
interpretability. As a counter-example, a generic "similar to" relation in a KG does nothing for informativeness as it is
still a blackbox information, no matter the transparent relations before and after in the path.

Multi-hop reasoning that is permitted by graphs is a great opportunity to enhance discovery, which is known to
impact effectiveness and satisfaction of RSs [16]. But this requires crafting new metrics for relevance evaluation, which
is still an open research topic [37].

KGs are also a promising lead for causality, as they can allow to model and estimate causal structures for data.

3.5 Perspectives

Drawing inspiration from the recent success of GANs [39], we could consider generative explanations in MRSs. In
particular, assuming the audio content is available, a GAN-generated explanation may provide a listenable explanation
of what the user tastes are like according to the model. Indeed, the explanation may be conditioned on some priors [76],
e. g., what the user likes about metal or jazz, to provide reasonable explanations. However, these types of explanations
are hampered by the demanding resources required to generate audios [27].

Another interesting direction is exploiting human concepts of musical understanding [22, 55]. For example, to
understand how much the concept of ’rock’ or ’happy’ matters for the recommendation to a specific user. Beyond
informativeness, this may also lead to uncovering bias in the datasets (e. g., how much the concept of male artist matters
for the recommendation).
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Lastly, counterfactual or contrastive explanations not only pinpoint the causes of a model decision but also provide
users with actionable levers to change the recommendation [75, 108, 111]. Among the explanation types, counterfac-
tual explanations may be considered best compliant to the GDPR [85] as they can provide a refined framework for
fairness [64].

4 EVALUATING EXPLANATIONS

EvaluatingMRS explanations is paramount to assess whether the explanation goals (Section 2) are met by the explanation
methods (Section 3). This is an inherently hard task since it involves a multitude of factors, including the targeted goals
of the explanation (i. e., asserting understandability), the type of explanation (e. g., whether the XAI method works as
intended), and the underlying RS model (e. g., checking whether we are trying to explain meaningful recommendations
in the first place). We have discussed some evaluation aspects in previous sections, specific to particular explanation
dimensions and categories of methods. While there exists no one-size-fits-all evaluation strategy, in the following, we
provide some general guidelines, tailored to the target audience of the explanation.

4.1 Evaluating explanation from the end-user’s perspective

Since RSs explanations mostly target end-consumers, it is legitimate to involve them in the evaluation procedure. One
straightforward way to evaluate such explanations is to conduct user studies [61, 71] and assess if the explanations
allow to address the targeted goals. We have argued in Section 2.4 that an explanation ground-truth is an evasive
concept. Nevertheless, user studies can provide cues for what explanation types are best suited in specific domains,
investigate research questions (e. g., should we use explanations in visual or text form?), and can also detect practical
misuses [54].

In the context of MRSs, user studies showed that visual explanations increase understandability [7] while social or
sentence explanations are more persuasive [102]. However, providing too many details results in cognitive overload and
is negatively perceived [62]. Also, persuasiveness does not necessarily correlate with the value recommendations have
for the user. For instance, a user following an artist recommendation because a friend likes it does not necessarily result
in the user liking the artist. One suggestion to overcome this is by corroborating different types of explanations (e. g.,
social with feature-based explanations) [102]. Another solution is to enable conversations between user and system, so
recommendations could be gradually improved with system’s explanations and user’s feedback [120].

User studies in MRSs are typically either between-subject or within-subject. Studies of the first type split users in
two groups: one does receive the explanation, the other does not [74]. Hence, we can naturally quantify the effect
of the explanation by comparing the results between groups. The prominent A/B testing frequently used in industry
belongs to this study type, where a large basin of users is available and different interfaces can be tested simultaneously.
In contrast, within-subject experiments are used when only few users are available, especially outside the industry
context. In these studies, each user is presented with all explanation interfaces [18, 46, 62, 74, 83, 107, 110], and one
containing no explanation. Such within-subject studies need to take care of possible confounding factors emerging
from the subsequent interaction with different interfaces (e. g., a user may feel lost interacting with a complex interface
after seeing a very simple one).

Another fundamental aspect of user studies are the type of measurements they employ [61], usually either behavioral,
such as click-through-rates and time-spent-interacting [7, 120], or attitudinal, for instance, surveys and semi-structured
interviews [10, 62]. Generally, the measurement should be carefully tailored to the explanation goal(s). For example, if
persuasiveness and trustworthiness are the most relevant explanation goals, we can assess the first via click-through-rate
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and the second through specific questions e. g., "Do you trust the recommendation?". In an industrial context, these
measurements may be used as key performance indicators of the explanations, though little research has been carried
out here beyond general users’ satisfaction (e. g., streaming time and weekly active users count).

Lastly, music consumption is influenced by the user’s personal characteristics and context (see Section 1), which also
affect the reception of the explanations. It is, therefore, necessary to take them into account by ensuring a representative
population sample. Research has considered different demographics (e. g., gender, age group, and country) [10, 102],
musical sophistication [74], listening habits [7, 83], and psychological traits such as personality [62] and need for
cognition [74].

4.2 Evaluating explanation from the technical stakeholders’ perspective

Methods to evaluate explanations can also serve the technical stakeholder’s side of MRSs, e. g., engineers and data
analysts. Technical – offline – evaluations, though more convenient to conduct than user studies, are prone to the
adoption of sketchy intuitive metrics, which can result in confirmation biases [31, 67]. Fortunately, some metrics for
explainability are widely agreed upon and seldom lead to misinterpretations. For instance, the stability of an explanation
between re-estimations [79], its robustness to small data changes [6, 58], and its consistency across several similar
models [34] appear to be reasonable minimal requirements for XAI. Similarly, sparsity is often desirable for explanations
since fewer parameters in the explanation translate to better cognitive handling [94]. Discriminativeness is already
a not-so-trivial requirement as some popular feature-based explanation methods were shown to result in the same
explanations across several class predictions [3]. Other subtle sanity checks are necessary: e. g., some ML models tend
to leverage out-of-distribution artifacts and thus provide nonsensical explanations [63], which must be avoided.

In a semi-encouraging manner, some XAI goals seem harder to achieve than to check. For instance, fairness objec-
tives often stem from measured biases (e. g., disparity), the impact of which a fairness-inducing system can thus be
quantified [36]. Note that this gets trickier for less tractable objectives (e. g., minimizing environmental impact) or if a
complete measurement is unavailable, costly, or requires time to witness a significant change. The same could be said
for interactivity, for instance by tracking the variety of tracks a user listens to after adopting the system.

Not every method can generate explanations for all items or users of a MRSs. Thus, it is useful to measure the
coverage of a method, e. g., how many explainable items are recommended in the top-k list for each user [1, 87]. Likewise,
computational efficiency of explanation generation should be taken into account [20], particularly for time-sensitive
use cases.

5 EXPLAINABILITY CHALLENGES IN AN INDUSTRIAL CONTEXT

In previous sections, we discussed different ways to make MRSs more explainable and to evaluate explanations. We
now focus on the inherent challenges that arise in a real industrial context when trying to implement these methods to
explain recommendations to end-users.

5.1 Explanations in real MRS

Many providers of commercial music streaming services design their recommendation interface as swipeable carousels
[11], namely sequences of sections that users can scroll. These carousels have titles that convey information to end-users
such as:
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Fig. 4. Real-world recommendations with explanations.

• Self-explanatory titles: e. g., "Top 10", "Popular in your area", "Trending content" or "Recommended for you" that
merely indicate the content selection process (Figure 4 top).
• Feature-based explanations: e. g., "70’s soul" or "Rock music" (Figure 4 middle)
• Example-based explanations: e. g., "Because you like artist X", "Because you listened to album Y" (Figure 4 bottom)

Certainly, these simple and crude explanations are in contrast with the advanced explanation capabilities we have
presented earlier. Graph-based explanations, for instance, do not easily fit the headline formatting constraint, due
to their length and complexity. Therefore, they are quite uncommon in industrial systems though they represent a
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Fig. 5. Overview of an industrial MRS. Explaining the recommendation may require more than an explainable core MRS.

promising aspect of conversational MRSs. In the following, we further analyze this discrepancy between the scientific
state of the art and the industrial realm.

5.2 Overview of an industrial MRS

A simplistic view of an industrial MRS is given in Figure 5. Central to it is the Core Recommendation Engine that models
users and items affinities. Usually trained offline on a vast amount of user-item interactions, the system is then used
online to generate item recommendations for each user accessing the service. This core MRS is complemented by
heuristic filters and pre/post processing.

To train and query the Core module, only a fraction of all available information about items and users will be
eventually used. For instance, users’ metadata such as location, context or declared age can be used as-is, transformed
(e. g., quantized into broad areas or age buckets) or discarded. Items’ data can be even more heavily processed. The
audio signal can be subsampled, compressed, bounded, or normalized. Contextual information about the device, time,
and location may be collected or inferred. Additionally, some systems leverage continuous user feedback in a session
for online adaptation.

Symmetrically, the direct output of the core RS is not what the final user will be confronted with. Heuristics may
be added, for instance to remove items that were already presented recently. In some contexts, enforcing contractual
or legal obligations (such as the Digital Millennium Copyright Act rules for internet broadcasters [24]) can also be
necessary. Finally, product constraints in terms of display space on the device, connectivity status, or content availability
issues can impact recommendations.
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“We recommended the song A by artist B to you because:
(1) We considered your recent history (e. g., 3 months) and that older interaction may no longer be relevant. Also,

considering a longer time period would have been too computationally costly.
(2) We also considered the recent history of many more users (not all of them, some were excluded because, for instance

they had too few interactions, or peculiar activity patterns) to learn a representation space encoding similarity
between artists with a machine learning system.

(3) The machine learning system learned to give close representations to artists that are co-listened by the same set of
users and distant representations to artists that are not.

(4) We saw that you listened to songs by artists similar to artist B and you did not skip them which we interpreted as
positive feedback.

(5) Eventually, you also explicitly liked artists similar to B or songs similar to A.
(6) Some other songs that could have been very relevant in this context were discarded because you skipped them in a

previous session.
(7) We sampled items in our representation space that are close to items to which you gave positive feedback and far

from those with negative feedback.
(8) Song A and artist B also passed other heuristic filters (e. g., regarding redundancy of recommended content, or a user

personal blacklist).”
Table 1. Honest recommendations explanation.

5.3 Issues with explainability in industrial MRS

If we were to provide a detailed description of the internals of an MRS, destined to end-users and using natural language,
it would probably look like the explanations provided in Table 1. While these may seem too detailed and almost
provocative, they highlight a set of issues that we may face when trying to include explanations in an industrial MRS.

Issues with engineering assumptions and design choices. MRSs largely rely on implicit feedback and the engineering
assumptions that come with their processing. For instance, most music services collect user feedbacks through basic
interactions, namely skips, likes, dislikes, listening history and navigation outside what was provided by the MRS (such
as music that was retrieved through the search engine). While dislikes are rather self-explanatory, the intention of the
user liking a recommended item may not be that clear as users may use it for bookmarking songs. The intention behind
a skip is even more difficult to understand [4], while skips remain the most basic and common interactions. Thus, MRS
designers usually want to take advantage of them and enforce heuristic rules, e. g., negatively weighting skips and
positively considering full-songs listenings (even though the music may have been played without someone actually
listening to it).

Some design choices can also be made in order to make the system computationally efficient, notably limiting the
amount of data: for instance, in item (1) of Table 1, the system needs to explain that old interactions were not taken
into account for providing the recommendation, otherwise a user may not understand why some recurrent skip of an
artist they dislike was not taken into account. It is worth noting that such design choices are usually optimized in the
industrial context (e. g., through A/B testing), but are rarely considered in academic research.

We could also mention that it is common, in large catalogs, to encounter metadata ambiguities such as homonym
artist profiles or polysemous musical genres. The impacts of such ambiguities on the system can be large and put
explanation at risk of being deceptive, for instance, if an example-based explanation "Because you listened to artist X"
is displayed to a user that listened to a different artist named X.
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In the artificial explanation presented in Table 1, items (4), (6), and (1) rely on pragmatic assumptions. This makes
the explanation quite complex and may decrease user satisfaction, especially if some assumption is invalid: e. g., when a
song was skipped because played in an inappropriate context and not because it was disliked. Furthermore, providing
such a detailed explanation may change the user behavior w. r. t. these interactions: e. g., they may avoid skipping songs
they like in order to prevent them from being discarded in future recommendations, which may cause dissatisfaction.

Trade off between simplicity of the explanation and complexity of the RS. Among industrial actors, the less is more design
pattern is widely adopted as a general good practice supported by the theory of cognitive load applied to user interface
design [122]. The latter suggests that unnecessary display of information goes against ergonomics principles [96], and
can thus be detrimental to users’ satisfaction. Following these guidelines, end-user explanations should be carefully
crafted to remain simple and concise, hence making cognitive overload less likely.

Additionally, industrial incentives are primarily driven toward highly accurate systems. This often requires complex
MRS components, making explanations not simple enough to be provided to the user. For instance, some constituting
blocks can be based on black-box methods, such as latent factor-based models or deep embeddings that are widely used
in MRSs. These models embed users and items as multidimensional vectors in a latent space, and represent affinity as
their relative distance in this space. While they usually provide good results in a large variety of recommendation tasks,
the latent factors are very difficult to understand: for instance, in item (2) of Table 1, artist similarity is computed by a
black-box system which is barely explainable to the user.

Besides, several MRS processing blocks rely on parameter choices. For instance, one may not consider all past
user-song interactions to train the user-item affinity model, but only those that are significant (e. g., only consider
interactions when the user listened to at least half of a song). But this threshold is arbitrary and may exclude interactions
that are important to a user: e. g., users only listening to the intro of a song many times because they like it a lot.
Arguably, these parameters should be optimized, but in practice they are so numerous that optimization becomes
intractable.

Finally, industrial MRSs are built upon several sub-blocks that are glued together and that rely on various sources of
data: user modeling, content modeling, user-item affinity modeling, etc. The recommendation is made on top of all
those blocks that may each influence the final recommendation. The impact of each block on this final recommendation
is quite difficult to assess and, consequently, it is hard to generate a simple explanation on top of these unclear impacts.
Feature selection may appear as a solution, but as long as several features are significantly impacting the prediction,
the explanation would need to be either complex or incomplete. The overall complexity of explanations in Table 1
illustrates this issue.

Issues of transparency with respect to company competition. One of the main goals of explanations for RSs is to increase
transparency. While transparency can boost user satisfaction, it can possibly disclose some critical aspects of the system.
Therefore, making sure that explanations do not reveal insights about the system internals can be necessary. For instance,
releasing the information that the MRS uses artist embeddings (item (3) of Table 1) or a specific hyperparameter of the
system such as the considered time-frame in the history (item (1)) can be sensitive information that a private company
may be reluctant to make public to competitors.

5.4 Perspectives for explainable MRSs

Improving the level of explanation of MRSs while keeping strong simplicity constraints for the user remains a challenge.
Though, the end-user is not the only stakeholder to be impacted by MRSs. For instance, the revenue of music producers
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is impacted, too. Global explanations may thus be relevant for such an audience, in terms of fairness and transparency
(explanationswould not be about single recommendations but probably about explainingwhy an artist was recommended
to a particular group of people). As there are no simplicity constraints for this kind of stakeholder, explanations could
possibly be much more elaborate.

Another aspect is that keeping a system explainable is important for constantly improving its performance. For
instance, receiving user complaints or feedback about bad recommendations can only be leveraged for improving the
system if the RS engineers can understand the reason for these mis-recommendations. A RS that relies on black-box
blocks prevents understanding bad recommendations and, therefore, hinders improving the system.

Finally, advanced users may want more control, and simplicity constraints may be less important to them: For
instance, [52] argues that, as opposed to the less is more design pattern, giving users additional control over the RS does
increase cognitive load, but also increases user satisfaction for users who have a deep understanding of how the RS
works. Controls that would enable interacting with the MRS, make possible a positive feedback loop: explanations can
be explicitly leveraged by the user to act on the RS and mitigate future spurious recommendations.

Interestingly, the increasing usage of voice-controlled devices to pilot music streaming services creates a promising
new playground for deploying explainable MRSs and beyond, to create fully interactive experiences where recommen-
dations can be challenged, and eventually improved.

ACKNOWLEDGMENTS

This work received support from the Austrian Science Fund (FWF): P33526 and DFH-23.

REFERENCES
[1] Abdollahi, B. and Nasraoui, O. (2016). Explainable matrix factorization for collaborative filtering. In Proceedings of the 25th International Conference
Companion on World Wide Web, pages 5–6.

[2] Abdollahi, B. and Nasraoui, O. (2017). Using explainability for constrained matrix factorization. In Proceedings of the Eleventh ACM Conference on
Recommender Systems, page 79–83, New York. ACM.

[3] Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., and Kim, B. (2018). Sanity checks for saliency maps. Advances in neural information
processing systems, 31:9505–9515.

[4] Afchar, D. and Hennequin, R. (2020). Making neural networks interpretable with attribution: Application to implicit signals prediction. In Fourteenth
ACM Conference on Recommender Systems, page 220–229, New York. ACM.

[5] Aljanaki, A. and Soleymani, M. (2018). A data-driven approach to mid-level perceptual musical feature modeling. arXiv preprint arXiv:1806.04903.
[6] Alvarez-Melis, D. and Jaakkola, T. S. (2018). On the robustness of interpretability methods. arXiv preprint arXiv:1806.08049.
[7] Andjelkovic, I., Parra, D., and O’Donovan, J. (2016). Moodplay: Interactive mood-based music discovery and recommendation. In Proceedings of the
2016 Conference on User Modeling Adaptation and Personalization, page 275–279, New York. ACM.

[8] Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., Benjamins, R., et al. (2020).
Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai. Information Fusion, 58:82–115.

[9] Balog, K. and Radlinski, F. (2020). Measuring Recommendation Explanation Quality: The Conflicting Goals of Explanations, page 329–338. ACM, New
York.

[10] Behrooz, M., Mennicken, S., Thom-Santelli, J., Kumar, R., and Cramer, H. (2019). Augmenting music listening experiences on voice assistants. In
International Society for Music Information Retrieval Conference.

[11] Bendada, W., Salha, G., and Bontempelli, T. (2020). Carousel personalization in music streaming apps with contextual bandits. In Fourteenth ACM
Conference on Recommender Systems, page 420–425, New York. ACM.

[12] Blum, A. L. and Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial intelligence, 97(1-2):245–271.
[13] Bonnin, G. and Jannach, D. (2014). Automated generation of music playlists: Survey and experiments. ACM Comput. Surv., 47(2):26:1–26:35.
[14] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and Yakhnenko, O. (2013). Translating embeddings for modeling multi-relational data. In
Advances in Neural Information Processing Systems, pages 1–9.

[15] Bridge, D., Göker, M. H., McGinty, L., and Smyth, B. (2005). Case-based recommender systems. The Knowledge Engineering Review, 20(3):315.
[16] Castells, P., Vargas, S., and Wang, J. (2011). Novelty and diversity metrics for recommender systems: choice, discovery and relevance. pages 881–918.



20 Afchar et al.

[17] Celma, Ò., Herrera, P., and Serra, X. (2006). Bridging the music semantic gap. InWorkshop on Mastering the Gap: From Information Extraction to
Semantic Representation, volume 187, Budva, Montenegro. CEUR.

[18] Chang, S., Harper, F. M., and Terveen, L. G. (2016). Crowd-based personalized natural language explanations for recommendations. In Proceedings of
the 10th ACM Conference on Recommender Systems, pages 175–182.

[19] Chen, H., Janizek, J. D., Lundberg, S., and Lee, S.-I. (2020a). True to the model or true to the data?
[20] Chen, J., Song, L., Wainwright, M., and Jordan, M. (2018). Learning to explain: An information-theoretic perspective on model interpretation. In
International Conference on Machine Learning, pages 883–892. PMLR.

[21] Chen, X., Chen, H., Xu, H., Zhang, Y., Cao, Y., Qin, Z., and Zha, H. (2019). Personalized fashion recommendation with visual explanations based
on multimodal attention network: Towards visually explainable recommendation. In Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, page 765–774, New York. ACM.

[22] Chen, Z., Bei, Y., and Rudin, C. (2020b). Concept whitening for interpretable image recognition. Nature Machine Intelligence, 2(12):772–782.
[23] Choi, J., Khlif, A., and Epure, E. (2020). Prediction of user listening contexts for music playlists. In Proceedings of the 1st Workshop on NLP for Music
and Audio, pages 23–27, Online. Association for Computational Linguistics.

[24] Cobble, H. (1998). Digital millennium copyright act. Accessed: 2022-01-25.
[25] Costa, F., Ouyang, S., Dolog, P., and Lawlor, A. (2018). Automatic generation of natural language explanations. In Proceedings of the 23rd International
Conference on Intelligent User Interfaces Companion, New York. ACM.

[26] Covert, I., Lundberg, S., and Lee, S.-I. (2020). Feature removal is a unifying principle for model explanation methods. arXiv preprint arXiv:2011.03623.
[27] Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A., and Sutskever, I. (2020). Jukebox: A generative model for music. arXiv preprint arXiv:2005.00341.
[28] Dinu, J., Bigham, J., and Kolter, J. Z. (2020). Challenging common interpretability assumptions in feature attribution explanations. NeurIPS 2020
ML-Retrospectives, Surveys & Meta-Analyses Workshop.

[29] Dombrowski, A.-K., Alber, M., Anders, C., Ackermann, M., Müller, K.-R., and Kessel, P. (2019). Explanations can be manipulated and geometry is to
blame. In Advances in Neural Information Processing Systems, pages 13589–13600.

[30] Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., and Zhang, W. (2014). Knowledge vault: A web-scale
approach to probabilistic knowledge fusion. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 601–610.

[31] Doshi-Velez, F. and Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608.
[32] Ehrlich, K., Kirk, S. E., Patterson, J., Rasmussen, J. C., Ross, S. I., and Gruen, D. M. (2011). Taking advice from intelligent systems: the double-edged
sword of explanations. In Proceedings of the 16th international conference on Intelligent user interfaces, pages 125–134.

[33] Epure, E. V., Salha, G., and Hennequin, R. (2020). Multilingual music genre embeddings for effective cross-lingual music item annotation. In
International Society for Music Information Retrieval Conference.

[34] Fel, T. and Vigouroux, D. (2020). Representativity and consistency measures for deep neural network explanations. arXiv preprint arXiv:2009.04521.
[35] Ferwerda, B., Schedl, M., and Tkalcic, M. (2015). Personality & emotional states: Understanding users’ music listening needs. In Posters, Demos,
Late-breaking Results and Workshop Proceedings of the 23rd Conference on User Modeling, Adaptation, and Personalization, volume 1388. CEUR-WS.

[36] Frye, C., Feige, I., and Rowat, C. (2019). Asymmetric shapley values: incorporating causal knowledge into model-agnostic explainability. arXiv
preprint arXiv:1910.06358.

[37] Ge, M., Delgado-Battenfeld, C., and Jannach, D. (2010). Beyond accuracy: evaluating recommender systems by coverage and serendipity. In
Proceedings of the fourth ACM conference on Recommender systems, pages 257–260.

[38] Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., and Kagal, L. (2018). Explaining explanations: An overview of interpretability of machine
learning. In 2018 IEEE 5th International Conference on data science and advanced analytics, pages 80–89. IEEE.

[39] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial networks.
arXiv preprint arXiv:1406.2661.

[40] Gori, M. and Pucci, A. (2007). Itemrank: A random-walk based scoring algorithm for recommender engines. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence, pages 2766–2771.

[41] Goto, M. and Dannenberg, R. B. (2019). Music interfaces based on automatic music signal analysis: New ways to create and listen to music. IEEE
Signal Process. Mag., 36(1):74–81.

[42] Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 855–864.

[43] Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM
Comput. Surv., 51(5).

[44] He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S. (2017). Neural collaborative filtering. In Proceedings of the 26th international conference on
world wide web, pages 173–182.

[45] Hendricks, L. A., Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., and Darrell, T. (2016). Generating visual explanations. In European Conference on
Computer Vision, pages 3–19. Springer.

[46] Herlocker, J. L., Konstan, J. A., and Riedl, J. (2000). Explaining collaborative filtering recommendations. In Proceedings of the 2000 ACM conference on
Computer supported cooperative work, pages 241–250.



Explainability in Music Recommender Systems 21

[47] Hidasi, B., Karatzoglou, A., Baltrunas, L., and Tikk, D. (2016). Session-based recommendations with recurrent neural networks. In 4th International
Conference on Learning Representations.

[48] Ibrahim, K., Richard, G., Epure, E., and Peeters, G. (2020a). Should we consider the users in contextual music auto-tagging models? In International
Society for Music Information Retrieval Conference.

[49] Ibrahim, K. M., Royo-Letelier, J., Epure, E. V., Peeters, G., and Richard, G. (2020b). Audio-based auto-tagging with contextual tags for music. In IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 16–20. IEEE.

[50] Jannach, D., Lerche, L., and Kamehkhosh, I. (2015). Beyond "hitting the hits": Generating coherent music playlist continuations with the right tracks.
In Proceedings of the 9th ACM Conference on Recommender Systems, pages 187–194. ACM.

[51] Ji, S., Pan, S., Cambria, E., Marttinen, P., and Yu, P. S. (2021). A survey on knowledge graphs: Representation, acquisition and applications. IEEE
Transactions on Neural Networks and Learning Systems.

[52] Jin, Y., Cardoso, B., and Verbert, K. (2017). How do different levels of user control affect cognitive load and acceptance of recommendations? In
Proceedings of the 4th Joint Workshop on Interfaces and Human Decision Making for Recommender Systems, volume 1884, pages 35–42. CEUR.

[53] Kang, W.-C. and McAuley, J. (2018). Self-attentive sequential recommendation. In 2018 IEEE International Conference on Data Mining, pages 197–206.
IEEE.

[54] Kaur, H., Nori, H., Jenkins, S., Caruana, R., Wallach, H., and Wortman Vaughan, J. (2020). Interpreting interpretability: Understanding data scientists’
use of interpretability tools for machine learning. In Proceedings of the 2020 Conference on Human Factors in Computing Systems, pages 1–14.

[55] Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., et al. (2018). Interpretability beyond feature attribution: Quantitative testing with
concept activation vectors (tcav). In International conference on machine learning, pages 2668–2677. PMLR.

[56] Kim, D. and Yum, B. (2005). Collaborative filtering based on iterative principal component analysis. Expert Syst. Appl., 28(4):823–830.
[57] Kim, J., Demetriou, A. M., Manolios, S., Tavella, M. S., and Liem, C. C. (2020). "butter lyrics over hominy grit": Comparing audio and psychology-based
text features in mir tasks. International Society for Music Information Retrieval Conference.

[58] Kindermans, P.-J., Hooker, S., Adebayo, J., Alber, M., Schütt, K. T., Dähne, S., Erhan, D., and Kim, B. (2019). The (un) reliability of saliency methods.
In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pages 267–280. Springer.

[59] Knees, P. and Schedl, M. (2016). Music similarity and retrieval: an introduction to audio-and web-based strategies, volume 36. Springer.
[60] Knees, P., Schedl, M., and Goto, M. (2020). Intelligent user interfaces for music discovery. Trans. Int. Soc. Music. Inf. Retr., 3(1):165–179.
[61] Knijnenburg, B. P., Willemsen, M. C., Gantner, Z., Soncu, H., and Newell, C. (2012). Explaining the user experience of recommender systems. User
Modeling and User-Adapted Interaction, 22(4):441–504.

[62] Kouki, P., Schaffer, J., Pujara, J., O’Donovan, J., and Getoor, L. (2019). Personalized explanations for hybrid recommender systems. In Proceedings of
the 24th International Conference on Intelligent User Interfaces, page 379–390, New York. ACM.

[63] Kumar, I. E., Venkatasubramanian, S., Scheidegger, C., and Friedler, S. (2020). Problems with shapley-value-based explanations as feature importance
measures. In International Conference on Machine Learning, pages 5491–5500. PMLR.

[64] Kusner, M. J., Loftus, J., Russell, C., and Silva, R. (2017). Counterfactual fairness. In Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc.

[65] Lee, J., Bryan, N. J., Salamon, J., Jin, Z., and Nam, J. (2020). Disentangled multidimensional metric learning for music similarity. In IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 6–10. IEEE.

[66] Liang, D., Krishnan, R. G., Hoffman, M. D., and Jebara, T. (2018). Variational autoencoders for collaborative filtering. In Proceedings of the 2018 World
Wide Web Conference on World Wide Web, pages 689–698. ACM.

[67] Lipton, Z. C. (2018). The mythos of model interpretability. Queue, 16(3):31–57.
[68] Loni, B., Shi, Y., Larson, M. A., and Hanjalic, A. (2014). Cross-domain collaborative filtering with factorization machines. In Advances in Information
Retrieval - 36th European Conference on IR Research, volume 8416, pages 656–661. Springer.

[69] Lou, Y., Caruana, R., Gehrke, J., and Hooker, G. (2013). Accurate intelligible models with pairwise interactions. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 623–631.

[70] Lundberg, S. and Lee, S.-I. (2017). A unified approach to interpreting model predictions. arXiv preprint arXiv:1705.07874.
[71] Maxwell, S. E., Delaney, H. D., and Kelley, K. (2017). Designing experiments and analyzing data: A model comparison perspective. Routledge.
[72] Melchiorre, A., Haunschmid, V., Schedl, M., and Widmer, G. (2021). Lemons: Listenable explanations for music recommender systems. In Proceedings
of the 43rd European Conference on Information Retrieval.

[73] Melchiorre, A. B. and Schedl, M. (2020). Personality correlates of music audio preferences for modelling music listeners. In Proceedings of the 28th
ACM Conference on User Modeling, Adaptation and Personalization, pages 313–317.

[74] Millecamp, M., Htun, N. N., Conati, C., and Verbert, K. (2019). To explain or not to explain: the effects of personal characteristics when explaining
music recommendations. In Proceedings of the 24th International Conference on Intelligent User Interfaces, pages 397–407.

[75] Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267:1 – 38.
[76] Mirza, M. and Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.
[77] Moon, S., Shah, P., Kumar, A., and Subba, R. (2019). OpenDialKG: Explainable conversational reasoning with attention-based walks over knowledge
graphs. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 845–854, Florence, Italy. ACL.

[78] Müller, M. (2015). Fundamentals of music processing: Audio, analysis, algorithms, applications. Springer.



22 Afchar et al.

[79] Naman Bansal, Chirag Agarwal, A. N. (2020). Sam: The sensitivity of attribution methods to hyperparameters. In Proceedings of the IEEE conference
on computer vision and pattern recognition.

[80] Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. SIAM journal on computing, 24(2):227–234.
[81] Nunes, I. and Jannach, D. (2017). A systematic review and taxonomy of explanations in decision support and recommender systems. User Model.
User Adapt. Interact., 27(3-5):393–444.

[82] Oramas, S., Espinosa-Anke, L., Gómez, F., and Serra, X. (2018). Natural language processing for music knowledge discovery. Journal of New Music
Research, 47(4):365–382.

[83] Oramas, S., Espinosa-Anke, L., Sordo, M., Saggion, H., and Serra, X. (2016). Information extraction for knowledge base construction in the music
domain. Data & Knowledge Engineering, 106:70–83.

[84] Palumbo, E., Monti, D., Rizzo, G., Troncy, R., and Baralis, E. (2020). entity2rec: Property-specific knowledge graph embeddings for item recommen-
dation. Expert Syst. Appl., 151:113235.

[85] Parliament, E. U. (2016). Regulation (eu) 2016/679.
[86] Patwari, A., Kong, N., Wang, J., Gargi, U., Music, Y., Covell, M., and Jansen, A. (2020). Semantically meaningful attributes from co-listen embeddings
for playlist exploration and expansion. In International Society for Music Information Retrieval Conference.

[87] Peake, G. and Wang, J. (2018). Explanation Mining: Post Hoc Interpretability of Latent Factor Models for Recommendation Systems, page 2060–2069.
ACM, New York.

[88] Pons, J., Nieto, O., Prockup, M., Schmidt, E., Ehmann, A., and Serra, X. (2017). End-to-end learning for music audio tagging at scale. arXiv preprint
arXiv:1711.02520.

[89] Poursabzi-Sangdeh, F., Goldstein, D. G., Hofman, J. M., Vaughan, J. W., and Wallach, H. (2021). Manipulating and measuring model interpretability.
Conference on Human Factors in Computing Systems.

[90] Praher, V., Prinz, K., Flexer, A., and Widmer, G. (2021). On the veracity of local, model-agnostic explanations in audio classification: Targeted
investigations with adversarial examples. In International Society for Music Information Retrieval Conference.

[91] Rentfrow, P., Goldberg, L. R., and Zilca, R. (2011). Listening, Watching, and Reading: The Structure and Correlates of Entertainment Preferences.
Journal of Personality, 79:223–258.

[92] Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). " why should i trust you?" explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining, pages 1135–1144.

[93] Ricci, F., Rokach, L., and Shapira, B. (2015). Recommender Systems Handbook. Springer.
[94] Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine
Intelligence, 1(5):206–215.

[95] Salha, G., Limnios, S., Hennequin, R., Tran, V.-A., and Vazirgiannis, M. (2019). Gravity-inspired graph autoencoders for directed link prediction. In
Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pages 589–598.

[96] Scapin, D. L. and Bastien, J. C. (1997). Ergonomic criteria for evaluating the ergonomic quality of interactive systems. Behaviour & information
technology, 16(4-5):220–231.

[97] Schafer, J. B., Konstan, J., and Riedl, J. (1999). Recommender systems in e-commerce. In Proceedings of the 1st ACM conference on Electronic commerce,
pages 158–166.

[98] Schedl, M., Knees, P., McFee, B., Bogdanov, D., and Kaminskas, M. (2015). Music recommender systems. In Recommender Systems Handbook, pages
453–492. Springer.

[99] Schedl, M., Zamani, H., Chen, C., Deldjoo, Y., and Elahi, M. (2018). Current challenges and visions in music recommender systems research. Int. J.
Multim. Inf. Retr., 7(2):95–116.

[100] Sciuto, A., Saini, A., Forlizzi, J., and Hong, J. I. (2018). "hey alexa, what’s up?": A mixed-methods studies of in-home conversational agent usage. In
Proceedings of the 2018 Designing Interactive Systems Conference, page 857–868, New York. ACM.

[101] Serrano, S. and Smith, N. A. (2019). Is attention interpretable? In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 2931–2951.

[102] Sharma, A. and Cosley, D. (2013). Do social explanations work? studying and modeling the effects of social explanations in recommender systems.
In Proceedings of the 22nd International Conference on World Wide Web, page 1133–1144, New York. ACM.

[103] Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). Deep inside convolutional networks: Visualising image classification models and saliency
maps. Workshop, ICLR.

[104] Sundararajan, M. and Najmi, A. (2020). The many shapley values for model explanation. In International Conference on Machine Learning, volume
119, pages 9269–9278.

[105] Tintarev, N. and Masthoff, J. (2007). A survey of explanations in recommender systems. In ICDEW.
[106] Tintarev, N. and Masthoff, J. (2015). Explaining recommendations: Design and evaluation. In Recommender Systems Handbook, pages 353–382.
Springer.

[107] Tsukuda, K. and Goto, M. (2020). Explainable recommendation for repeat consumption. In Fourteenth ACM Conference on Recommender Systems,
pages 462–467.

[108] Ustun, B., Spangher, A., and Liu, Y. (2019). Actionable recourse in linear classification. In Proceedings of the Conference on Fairness, Accountability,
and Transparency, page 10–19, New York. ACM.



Explainability in Music Recommender Systems 23

[109] van den Oord, A., Dieleman, S., and Schrauwen, B. (2013). Deep content-based music recommendation. In Advances in Neural Information Processing
Systems, pages 2643–2651.

[110] Vig, J., Sen, S., and Riedl, J. (2009). Tagsplanations: explaining recommendations using tags. In Proceedings of the 14th international conference on
Intelligent user interfaces, pages 47–56.

[111] Wachter, S., Mittelstadt, B., and Russell, C. (2017). Counterfactual explanations without opening the black box: Automated decisions and the gdpr.
Harv. JL & Tech., 31:841.

[112] Wang, N., Wang, H., Jia, Y., and Yin, Y. (2018). Explainable recommendation via multi-task learning in opinionated text data. In The 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval, page 165–174, New York. ACM.

[113] Wang, X., Wang, D., Xu, C., He, X., Cao, Y., and Chua, T.-S. (2019). Explainable reasoning over knowledge graphs for recommendation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 5329–5336.

[114] Wang, Z., Zhang, J., Feng, J., and Chen, Z. (2014). Knowledge graph embedding by translating on hyperplanes. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 28.

[115] Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., and Leskovec, J. (2018). Graph convolutional neural networks for web-scale
recommender systems. In 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 974–983.

[116] Yu, L. and Liu, H. (2003). Feature selection for high-dimensional data: A fast correlation-based filter solution. In Proceedings of the 20th international
conference on machine learning, pages 856–863.

[117] Zamani, H., Schedl, M., Lamere, P., and Chen, C. (2019). An analysis of approaches taken in the ACM recsys challenge 2018 for automatic music
playlist continuation. ACM Trans. Intell. Syst. Technol., 10(5):57:1–57:21.

[118] Zhang, Y. and Chen, X. (2020). Explainable recommendation: A survey and new perspectives. Found. Trends Inf. Retr., 14(1):1–101.
[119] Zhang, Y., Zhang, H., Zhang, M., Liu, Y., and Ma, S. (2014). Do users rate or review? boost phrase-level sentiment labeling with review-level
sentiment classification. In Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, page
1027–1030, New York. ACM.

[120] Zhao, G., Fu, H., Song, R., Sakai, T., Chen, Z., Xie, X., and Qian, X. (2019). Personalized reason generation for explainable song recommendation.
ACM Trans. Intell. Syst. Technol., 10(4).

[121] Zhao, P., Rocha, G., Yu, B., et al. (2009). The composite absolute penalties family for grouped and hierarchical variable selection. The Annals of
Statistics, 37(6A):3468–3497.

[122] Zhou, F., Ji, Y., and Jiao, R. J. (2013). Affective and cognitive design for mass personalization: status and prospect. Journal of Intelligent Manufacturing,
24(5):104 7–1069.


	Abstract
	1 Music Recommender Systems
	1.1 Characteristics of music consumption and music recommender systems
	1.2 Common music recommendation tasks and methods

	2 Goals and Dimensions of Explainability for Music Recommender Systems
	2.1 Definitions and goals of explainability for MRS
	2.2 Local/Global scope
	2.3 Intrinsic/Post-hoc interpretability
	2.4 Un/supervised explanations
	2.5 Model/Data

	3 Making music recommender systems explainable
	3.1 Overview of explanation methods for MRSs
	3.2 Feature-based explanations
	3.3 Example-based explanations
	3.4 Graph-based explanations
	3.5 Perspectives

	4 Evaluating explanations
	4.1 Evaluating explanation from the end-user's perspective
	4.2 Evaluating explanation from the technical stakeholders' perspective

	5 Explainability challenges in an industrial context
	5.1 Explanations in real MRS
	5.2 Overview of an industrial MRS
	5.3 Issues with explainability in industrial MRS
	5.4 Perspectives for explainable MRSs

	References

